operator.cc 26.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15 16
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL

17 18 19
#include <gflags/gflags.h>
#include <glog/logging.h>

20
#include <algorithm>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
24
#include "paddle/fluid/framework/lod_tensor.h"
25
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
26 27
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
28
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
29

D
dzhwinter 已提交
30
DECLARE_bool(benchmark);
C
chengduoZH 已提交
31 32 33
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
34

Q
Qiao Longfei 已提交
35 36 37
namespace paddle {
namespace framework {

38 39 40 41 42 43
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
44

Q
qiaolongfei 已提交
45 46 47 48 49 50 51 52 53 54 55
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

56 57
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
58
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
59 60
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
61 62
  }

M
minqiyang 已提交
63 64
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
D
dzhwinter 已提交
65
    if (!tensor.IsInitialized()) {
66
      return DDim({-1});
67
    }
M
minqiyang 已提交
68 69 70 71 72 73 74
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
75 76 77 78 79
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
80 81 82 83 84 85
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
86 87 88 89 90
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
91

M
minqiyang 已提交
92 93
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
D
dzhwinter 已提交
94
    if (!tensor.IsInitialized()) {
95 96
      return "";
    }
M
minqiyang 已提交
97 98
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
99
    auto tensor = var->Get<SelectedRows>().value();
D
dzhwinter 已提交
100
    if (!tensor.IsInitialized()) {
Q
Qiao Longfei 已提交
101 102 103 104
      return "uninited";
    } else {
      return DataTypeToString(ToDataType(tensor.type()));
    }
D
dzhwinter 已提交
105 106 107 108 109
  } else {
    return "";
  }
}

110 111 112 113 114 115
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
116 117
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
118 119 120 121 122
  }

  return -1;
}

Q
Qiao Longfei 已提交
123 124 125 126 127 128 129 130
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
131 132
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
D
dzhwinter 已提交
133
    if (!tensor.IsInitialized()) {
134 135
      return default_lod;
    }
M
minqiyang 已提交
136
    return tensor.lod();
Q
Qiao Longfei 已提交
137 138 139 140 141
  } else {
    return default_lod;
  }
}

142
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
143 144
  VLOG(4) << place << " " << DebugStringEx(&scope);
  if (platform::is_gpu_place(place)) {
145
#ifndef PADDLE_WITH_CUDA
146
    PADDLE_THROW("Cannot run operator on place %s", place);
147
#else
148 149
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
150 151
#endif
  }
D
dzhwinter 已提交
152
  VLOG(3) << "start pool";
153 154
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::RecordEvent record_event(Type(), pool.Get(place));
D
dzhwinter 已提交
155
  VLOG(3) << "start RunImpl";
156 157
  RunImpl(scope, place);
  VLOG(3) << place << " " << DebugStringEx(&scope);
158 159
}

160 161 162 163 164 165 166 167
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

168
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
169
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
170
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
171 172
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
173
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
174 175
}

Y
Yu Yang 已提交
176 177
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
178
  auto it = inputs_.find(name);
179 180
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
181
  return it->second;
Y
Yan Chunwei 已提交
182 183
}

184
bool OperatorBase::HasOutputs(const std::string& name) const {
185
  if (outputs_.find(name) != outputs_.end()) {
186 187 188 189 190 191
    return true;
  } else {
    return false;
  }
}

192
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
193
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
194
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
195 196
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
197
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
198 199
}

Y
Yu Yang 已提交
200 201
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
202
  auto it = outputs_.find(name);
203 204
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
205
  return it->second;
Y
Yan Chunwei 已提交
206 207
}

208
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
D
dzhwinter 已提交
209
  VLOG(3) << this->Type() << " scope ptr " << scope;
Q
Qiao Longfei 已提交
210
  std::stringstream ss;
Y
Yu Yang 已提交
211
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
212 213
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
214 215
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
216 217
      auto var_name = input.second[i];
      ss << var_name;
218
      if (scope) {
Q
Qiao Longfei 已提交
219 220 221 222 223 224 225 226 227 228 229
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
230
        }
231
      }
Y
Yu Yang 已提交
232 233 234
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
235
    }
Y
Yu Yang 已提交
236
    ss << "]";
Y
Yu Yang 已提交
237 238
    ++it;
    if (it != inputs_.end()) {
239 240
      ss << ", ";
    }
Q
Qiao Longfei 已提交
241
  }
Y
Yu Yang 已提交
242
  ss << "}, outputs:{";
Y
Yu Yang 已提交
243 244
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
245 246
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
247 248
      auto var_name = output.second[i];
      ss << var_name;
249
      if (scope) {
Q
Qiao Longfei 已提交
250 251 252 253 254 255 256 257 258
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
259
        }
260
      }
Y
Yu Yang 已提交
261 262 263
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
264
    }
Y
Yu Yang 已提交
265
    ss << "]";
Y
Yu Yang 已提交
266 267
    ++it;
    if (it != outputs_.end()) {
268 269
      ss << ", ";
    }
Q
Qiao Longfei 已提交
270
  }
Y
Yu Yang 已提交
271
  ss << "}.";
Q
Qiao Longfei 已提交
272 273 274
  return ss.str();
}

Y
Yu Yang 已提交
275
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
276 277
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
278 279
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
280 281
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
282
}
283

Q
qijun 已提交
284 285
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
286
  for (auto& o : inputs_) {
Q
qijun 已提交
287 288 289 290 291 292
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
293 294 295 296 297 298 299 300 301 302
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
303
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
304 305

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
306
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
307 308 309 310 311 312 313 314 315
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
316 317
}

318 319 320
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
321
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
322 323

  for (auto& in : op_info->Proto().inputs()) {
324 325 326 327
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
328 329 330
  }

  for (auto& out : op_info->Proto().outputs()) {
331 332 333 334 335
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

352 353 354 355
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

356
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
357
  if (var->IsType<LoDTensor>()) {
358
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
359
  } else if (var->IsType<SelectedRows>()) {
360
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
361
  } else {
Y
Yang Yang 已提交
362 363
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
364 365 366 367 368
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
369
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
370
  } else if (var->IsType<SelectedRows>()) {
371
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
372
  } else {
Y
Yang Yang 已提交
373 374
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
375 376 377
  }
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

410
template <>
411
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
412
  auto* var = InputVar(name);
413 414
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
415 416 417
}

template <>
418
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
419 420 421 422
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
423 424 425 426 427
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
428 429 430 431
  return res;
}

template <>
432
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
433
  auto var = OutputVar(name);
Q
QI JUN 已提交
434
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
435 436 437
}

template <>
438
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
439 440 441 442
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
443 444
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
445 446
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
447
                                         : GetMutableTensorFromVar(var);
448
                 });
449 450 451
  return res;
}

Y
Yu Yang 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

467 468 469 470 471 472
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
473 474 475
    if (!op_.HasInputs(name)) {
      return false;
    }
476 477 478 479 480
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
481 482
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Input %s should not have more than one inputs", name);
483 484 485 486 487 488
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
489 490 491
    if (!op_.HasOutputs(name)) {
      return false;
    }
492 493 494 495 496
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
497 498
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Output %s should not have more than one inputs", name);
499 500 501 502 503 504
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
505 506 507
    if (!op_.HasInputs(name)) {
      return false;
    }
508 509 510 511 512 513 514 515 516 517 518 519 520
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
521 522 523
    if (!op_.HasOutputs(name)) {
      return false;
    }
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
548 549 550 551 552 553 554 555 556 557 558 559
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
560

M
mozga-intel 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
594 595
  }

596 597 598
  bool IsRuntime() const override { return true; }

 protected:
599 600
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
601
    PADDLE_ENFORCE_NOT_NULL(var);
602 603 604 605 606
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
607 608 609 610 611 612 613
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
614
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
615
    PADDLE_THROW("Only compile time support this method");
616 617 618 619 620 621 622 623 624
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
625 626
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
627 628 629
    }
  }

F
fengjiayi 已提交
630 631
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
632
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
633 634
  }

635
  proto::VarType::Type GetVarType(const std::string& name) const override {
636 637 638 639
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
640 641 642 643
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

644
 private:
645 646 647 648
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
649 650 651 652 653
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
654
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
655 656 657 658 659 660 661 662
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

663 664
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
665
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
D
dzhwinter 已提交
666
  VLOG(3) << "start Infershape";
667
  this->InferShape(&infer_shape_ctx);
D
dzhwinter 已提交
668
  VLOG(3) << "Infershape Pass";
Y
Yu Yang 已提交
669
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
670
  auto* dev_ctx = pool.Get(place);
671

672
  // check if op[type] has kernel registered.
D
dzhwinter 已提交
673
  VLOG(3) << "Start Kernels";
674
  auto& all_op_kernels = AllOpKernels();
D
dzhwinter 已提交
675
  VLOG(3) << "Kernel map finish";
676 677
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
678 679
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
680 681
  }

Q
qiaolongfei 已提交
682 683
  OpKernelMap& kernels = kernels_iter->second;

684 685
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
686

687 688 689 690
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
691 692
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
D
dzhwinter 已提交
693
  VLOG(3) << "expected_kernel_key: " << expected_kernel_key;
Q
qiaolongfei 已提交
694

695
  auto kernel_iter = kernels.find(expected_kernel_key);
696
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
697
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
698 699
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
700
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
701 702 703 704 705
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
706 707 708 709 710
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
711 712 713 714
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
715

Y
yuyang18 已提交
716 717 718 719 720 721
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
722
  }
Q
QI JUN 已提交
723

Y
yuyang18 已提交
724
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
725

Y
yuyang18 已提交
726 727 728
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
729 730
  }

D
dzhwinter 已提交
731
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
732
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
733
    dev_ctx->Wait();
D
dzhwinter 已提交
734
  }
C
chengduoZH 已提交
735 736 737

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
738
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
739 740 741
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
742 743
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
744 745 746
      }
    }
  }
Q
Qiao Longfei 已提交
747
}
Y
yuyang18 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
799
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
800 801 802 803 804 805
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
806

807
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
808 809 810
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
811
  std::string last_input_name;
Y
Yu Yang 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
826 827
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
828 829
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
830
          data_type = tmp;
831
          last_input_name = ipt_name;
Y
Yu Yang 已提交
832 833 834 835 836
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
837
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
838
}
839

840 841 842 843 844 845 846 847
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
848 849
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
850 851
}

Q
Qiao Longfei 已提交
852
}  // namespace framework
L
liaogang 已提交
853
}  // namespace paddle