jde_tracker.py 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py
"""

import numpy as np
from collections import defaultdict

from ..matching import jde_matching as matching
from ..motion import KalmanFilter
from .base_jde_tracker import TrackState, STrack
from .base_jde_tracker import joint_stracks, sub_stracks, remove_duplicate_stracks

__all__ = ['JDETracker']


class JDETracker(object):
    __shared__ = ['num_classes']
    """
    JDE tracker, support single class and multi classes

    Args:
        num_classes (int): the number of classes
        det_thresh (float): threshold of detection score
        track_buffer (int): buffer for tracker
        min_box_area (int): min box area to filter out low quality boxes
        vertical_ratio (float): w/h, the vertical ratio of the bbox to filter
            bad results. If set <0 means no need to filter bboxes,usually set
            1.6 for pedestrian tracking.
        tracked_thresh (float): linear assignment threshold of tracked 
            stracks and detections
        r_tracked_thresh (float): linear assignment threshold of 
            tracked stracks and unmatched detections
        unconfirmed_thresh (float): linear assignment threshold of 
            unconfirmed stracks and unmatched detections
        motion (str): motion model, KalmanFilter as default
        conf_thres (float): confidence threshold for tracking
        metric_type (str): either "euclidean" or "cosine", the distance metric 
            used for measurement to track association.
    """

    def __init__(self,
F
Feng Ni 已提交
55
                 use_byte=False,
56 57 58 59 60 61 62 63 64
                 num_classes=1,
                 det_thresh=0.3,
                 track_buffer=30,
                 min_box_area=200,
                 vertical_ratio=1.6,
                 tracked_thresh=0.7,
                 r_tracked_thresh=0.5,
                 unconfirmed_thresh=0.7,
                 conf_thres=0,
F
Feng Ni 已提交
65 66 67
                 match_thres=0.8,
                 low_conf_thres=0.2,
                 motion='KalmanFilter',
68
                 metric_type='euclidean'):
F
Feng Ni 已提交
69
        self.use_byte = use_byte
70
        self.num_classes = num_classes
F
Feng Ni 已提交
71
        self.det_thresh = det_thresh if not use_byte else conf_thres + 0.1
72 73 74 75 76 77 78
        self.track_buffer = track_buffer
        self.min_box_area = min_box_area
        self.vertical_ratio = vertical_ratio

        self.tracked_thresh = tracked_thresh
        self.r_tracked_thresh = r_tracked_thresh
        self.unconfirmed_thresh = unconfirmed_thresh
F
Feng Ni 已提交
79 80 81 82
        self.conf_thres = conf_thres
        self.match_thres = match_thres
        self.low_conf_thres = low_conf_thres

83 84 85 86 87 88 89 90 91 92 93 94
        if motion == 'KalmanFilter':
            self.motion = KalmanFilter()
        self.metric_type = metric_type

        self.frame_id = 0
        self.tracked_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.lost_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.removed_tracks_dict = defaultdict(list)  # dict(list[STrack])

        self.max_time_lost = 0
        # max_time_lost will be calculated: int(frame_rate / 30.0 * track_buffer)

F
Feng Ni 已提交
95
    def update(self, pred_dets, pred_embs=None):
96 97 98 99 100 101 102
        """
        Processes the image frame and finds bounding box(detections).
        Associates the detection with corresponding tracklets and also handles
            lost, removed, refound and active tracklets.

        Args:
            pred_dets (np.array): Detection results of the image, the shape is
103
                [N, 6], means 'cls_id, score, x0, y0, x1, y1'.
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
            pred_embs (np.array): Embedding results of the image, the shape is
                [N, 128] or [N, 512].

        Return:
            output_stracks_dict (dict(list)): The list contains information
                regarding the online_tracklets for the recieved image tensor.
        """
        self.frame_id += 1
        if self.frame_id == 1:
            STrack.init_count(self.num_classes)
        activated_tracks_dict = defaultdict(list)
        refined_tracks_dict = defaultdict(list)
        lost_tracks_dict = defaultdict(list)
        removed_tracks_dict = defaultdict(list)
        output_tracks_dict = defaultdict(list)

        pred_dets_dict = defaultdict(list)
        pred_embs_dict = defaultdict(list)

        # unify single and multi classes detection and embedding results
        for cls_id in range(self.num_classes):
125
            cls_idx = (pred_dets[:, 0:1] == cls_id).squeeze(-1)
126
            pred_dets_dict[cls_id] = pred_dets[cls_idx]
F
Feng Ni 已提交
127 128 129 130
            if pred_embs is not None:
                pred_embs_dict[cls_id] = pred_embs[cls_idx]
            else:
                pred_embs_dict[cls_id] = None
131 132 133 134 135

        for cls_id in range(self.num_classes):
            """ Step 1: Get detections by class"""
            pred_dets_cls = pred_dets_dict[cls_id]
            pred_embs_cls = pred_embs_dict[cls_id]
136
            remain_inds = (pred_dets_cls[:, 1:2] > self.conf_thres).squeeze(-1)
137 138
            if remain_inds.sum() > 0:
                pred_dets_cls = pred_dets_cls[remain_inds]
F
Feng Ni 已提交
139 140 141
                if self.use_byte:
                    detections = [
                        STrack(
142 143 144 145 146
                            STrack.tlbr_to_tlwh(tlbrs[2:6]),
                            tlbrs[1],
                            cls_id,
                            30,
                            temp_feat=None) for tlbrs in pred_dets_cls
F
Feng Ni 已提交
147 148 149 150 151
                    ]
                else:
                    pred_embs_cls = pred_embs_cls[remain_inds]
                    detections = [
                        STrack(
152 153 154 155
                            STrack.tlbr_to_tlwh(tlbrs[2:6]), tlbrs[1], cls_id,
                            30, temp_feat)
                        for (tlbrs, temp_feat
                             ) in zip(pred_dets_cls, pred_embs_cls)
F
Feng Ni 已提交
156
                    ]
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            else:
                detections = []
            ''' Add newly detected tracklets to tracked_stracks'''
            unconfirmed_dict = defaultdict(list)
            tracked_tracks_dict = defaultdict(list)
            for track in self.tracked_tracks_dict[cls_id]:
                if not track.is_activated:
                    # previous tracks which are not active in the current frame are added in unconfirmed list
                    unconfirmed_dict[cls_id].append(track)
                else:
                    # Active tracks are added to the local list 'tracked_stracks'
                    tracked_tracks_dict[cls_id].append(track)
            """ Step 2: First association, with embedding"""
            # building tracking pool for the current frame
            track_pool_dict = defaultdict(list)
            track_pool_dict[cls_id] = joint_stracks(
                tracked_tracks_dict[cls_id], self.lost_tracks_dict[cls_id])

            # Predict the current location with KalmanFilter
            STrack.multi_predict(track_pool_dict[cls_id], self.motion)

F
Feng Ni 已提交
178
            if self.use_byte:
179 180
                dists = matching.iou_distance(track_pool_dict[cls_id],
                                              detections)
F
Feng Ni 已提交
181
                matches, u_track, u_detection = matching.linear_assignment(
182
                    dists, thresh=self.match_thres)  # not self.tracked_thresh
F
Feng Ni 已提交
183 184
            else:
                dists = matching.embedding_distance(
185 186 187 188 189
                    track_pool_dict[cls_id],
                    detections,
                    metric=self.metric_type)
                dists = matching.fuse_motion(
                    self.motion, dists, track_pool_dict[cls_id], detections)
F
Feng Ni 已提交
190 191
                matches, u_track, u_detection = matching.linear_assignment(
                    dists, thresh=self.tracked_thresh)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

            for i_tracked, idet in matches:
                # i_tracked is the id of the track and idet is the detection
                track = track_pool_dict[cls_id][i_tracked]
                det = detections[idet]
                if track.state == TrackState.Tracked:
                    # If the track is active, add the detection to the track
                    track.update(detections[idet], self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    # We have obtained a detection from a track which is not active,
                    # hence put the track in refind_stracks list
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)

            # None of the steps below happen if there are no undetected tracks.
            """ Step 3: Second association, with IOU"""
F
Feng Ni 已提交
209
            if self.use_byte:
210 211
                inds_low = pred_dets_dict[cls_id][:, 1:2] > self.low_conf_thres
                inds_high = pred_dets_dict[cls_id][:, 1:2] < self.conf_thres
F
Feng Ni 已提交
212 213 214 215 216 217
                inds_second = np.logical_and(inds_low, inds_high).squeeze(-1)
                pred_dets_cls_second = pred_dets_dict[cls_id][inds_second]

                # association the untrack to the low score detections
                if len(pred_dets_cls_second) > 0:
                    detections_second = [
218 219 220 221 222 223
                        STrack(
                            STrack.tlbr_to_tlwh(tlbrs[:4]),
                            tlbrs[4],
                            cls_id,
                            30,
                            temp_feat=None)
F
Feng Ni 已提交
224 225 226 227 228 229 230 231
                        for tlbrs in pred_dets_cls_second[:, :5]
                    ]
                else:
                    detections_second = []
                r_tracked_stracks = [
                    track_pool_dict[cls_id][i] for i in u_track
                    if track_pool_dict[cls_id][i].state == TrackState.Tracked
                ]
232 233
                dists = matching.iou_distance(r_tracked_stracks,
                                              detections_second)
F
Feng Ni 已提交
234
                matches, u_track, u_detection_second = matching.linear_assignment(
235
                    dists, thresh=0.4)  # not r_tracked_thresh
F
Feng Ni 已提交
236 237 238 239 240 241 242
            else:
                detections = [detections[i] for i in u_detection]
                r_tracked_stracks = []
                for i in u_track:
                    if track_pool_dict[cls_id][i].state == TrackState.Tracked:
                        r_tracked_stracks.append(track_pool_dict[cls_id][i])
                dists = matching.iou_distance(r_tracked_stracks, detections)
243

F
Feng Ni 已提交
244 245
                matches, u_track, u_detection = matching.linear_assignment(
                    dists, thresh=self.r_tracked_thresh)
246 247 248

            for i_tracked, idet in matches:
                track = r_tracked_stracks[i_tracked]
249 250
                det = detections[
                    idet] if not self.use_byte else detections_second[idet]
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
                if track.state == TrackState.Tracked:
                    track.update(det, self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)

            for it in u_track:
                track = r_tracked_stracks[it]
                if not track.state == TrackState.Lost:
                    track.mark_lost()
                    lost_tracks_dict[cls_id].append(track)
            '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
            detections = [detections[i] for i in u_detection]
            dists = matching.iou_distance(unconfirmed_dict[cls_id], detections)
            matches, u_unconfirmed, u_detection = matching.linear_assignment(
                dists, thresh=self.unconfirmed_thresh)
            for i_tracked, idet in matches:
                unconfirmed_dict[cls_id][i_tracked].update(detections[idet],
                                                           self.frame_id)
                activated_tracks_dict[cls_id].append(unconfirmed_dict[cls_id][
                    i_tracked])
            for it in u_unconfirmed:
                track = unconfirmed_dict[cls_id][it]
                track.mark_removed()
                removed_tracks_dict[cls_id].append(track)
            """ Step 4: Init new stracks"""
            for inew in u_detection:
                track = detections[inew]
                if track.score < self.det_thresh:
                    continue
                track.activate(self.motion, self.frame_id)
                activated_tracks_dict[cls_id].append(track)
            """ Step 5: Update state"""
            for track in self.lost_tracks_dict[cls_id]:
                if self.frame_id - track.end_frame > self.max_time_lost:
                    track.mark_removed()
                    removed_tracks_dict[cls_id].append(track)

            self.tracked_tracks_dict[cls_id] = [
                t for t in self.tracked_tracks_dict[cls_id]
                if t.state == TrackState.Tracked
            ]
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], activated_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], refined_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.tracked_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id].extend(lost_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.removed_tracks_dict[cls_id])
            self.removed_tracks_dict[cls_id].extend(removed_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id], self.lost_tracks_dict[
                cls_id] = remove_duplicate_stracks(
                    self.tracked_tracks_dict[cls_id],
                    self.lost_tracks_dict[cls_id])

            # get scores of lost tracks
            output_tracks_dict[cls_id] = [
                track for track in self.tracked_tracks_dict[cls_id]
                if track.is_activated
            ]

        return output_tracks_dict