jde_tracker.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py
"""

import numpy as np
from collections import defaultdict

from ..matching import jde_matching as matching
from ..motion import KalmanFilter
from .base_jde_tracker import TrackState, STrack
from .base_jde_tracker import joint_stracks, sub_stracks, remove_duplicate_stracks

__all__ = ['JDETracker']


class JDETracker(object):
    __shared__ = ['num_classes']
    """
    JDE tracker, support single class and multi classes

    Args:
        num_classes (int): the number of classes
        det_thresh (float): threshold of detection score
        track_buffer (int): buffer for tracker
        min_box_area (int): min box area to filter out low quality boxes
        vertical_ratio (float): w/h, the vertical ratio of the bbox to filter
            bad results. If set <0 means no need to filter bboxes,usually set
            1.6 for pedestrian tracking.
        tracked_thresh (float): linear assignment threshold of tracked 
            stracks and detections
        r_tracked_thresh (float): linear assignment threshold of 
            tracked stracks and unmatched detections
        unconfirmed_thresh (float): linear assignment threshold of 
            unconfirmed stracks and unmatched detections
        motion (str): motion model, KalmanFilter as default
        conf_thres (float): confidence threshold for tracking
        metric_type (str): either "euclidean" or "cosine", the distance metric 
            used for measurement to track association.
    """

    def __init__(self,
                 num_classes=1,
                 det_thresh=0.3,
                 track_buffer=30,
                 min_box_area=200,
                 vertical_ratio=1.6,
                 tracked_thresh=0.7,
                 r_tracked_thresh=0.5,
                 unconfirmed_thresh=0.7,
                 motion='KalmanFilter',
                 conf_thres=0,
                 metric_type='euclidean'):
        self.num_classes = num_classes
        self.det_thresh = det_thresh
        self.track_buffer = track_buffer
        self.min_box_area = min_box_area
        self.vertical_ratio = vertical_ratio

        self.tracked_thresh = tracked_thresh
        self.r_tracked_thresh = r_tracked_thresh
        self.unconfirmed_thresh = unconfirmed_thresh
        if motion == 'KalmanFilter':
            self.motion = KalmanFilter()
        self.conf_thres = conf_thres
        self.metric_type = metric_type

        self.frame_id = 0
        self.tracked_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.lost_tracks_dict = defaultdict(list)  # dict(list[STrack])
        self.removed_tracks_dict = defaultdict(list)  # dict(list[STrack])

        self.max_time_lost = 0
        # max_time_lost will be calculated: int(frame_rate / 30.0 * track_buffer)

    def update(self, pred_dets, pred_embs):
        """
        Processes the image frame and finds bounding box(detections).
        Associates the detection with corresponding tracklets and also handles
            lost, removed, refound and active tracklets.

        Args:
            pred_dets (np.array): Detection results of the image, the shape is
                [N, 6], means 'x0, y0, x1, y1, score, cls_id'.
            pred_embs (np.array): Embedding results of the image, the shape is
                [N, 128] or [N, 512].

        Return:
            output_stracks_dict (dict(list)): The list contains information
                regarding the online_tracklets for the recieved image tensor.
        """
        self.frame_id += 1
        if self.frame_id == 1:
            STrack.init_count(self.num_classes)
        activated_tracks_dict = defaultdict(list)
        refined_tracks_dict = defaultdict(list)
        lost_tracks_dict = defaultdict(list)
        removed_tracks_dict = defaultdict(list)
        output_tracks_dict = defaultdict(list)

        pred_dets_dict = defaultdict(list)
        pred_embs_dict = defaultdict(list)

        # unify single and multi classes detection and embedding results
        for cls_id in range(self.num_classes):
            cls_idx = (pred_dets[:, 5:] == cls_id).squeeze(-1)
            pred_dets_dict[cls_id] = pred_dets[cls_idx]
            pred_embs_dict[cls_id] = pred_embs[cls_idx]

        for cls_id in range(self.num_classes):
            """ Step 1: Get detections by class"""
            pred_dets_cls = pred_dets_dict[cls_id]
            pred_embs_cls = pred_embs_dict[cls_id]
            remain_inds = (pred_dets_cls[:, 4:5] > self.conf_thres).squeeze(-1)
            if remain_inds.sum() > 0:
                pred_dets_cls = pred_dets_cls[remain_inds]
                pred_embs_cls = pred_embs_cls[remain_inds]
                detections = [
                    STrack(
                        STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f,
                        self.num_classes, cls_id, 30)
                    for (tlbrs, f) in zip(pred_dets_cls, pred_embs_cls)
                ]
            else:
                detections = []
            ''' Add newly detected tracklets to tracked_stracks'''
            unconfirmed_dict = defaultdict(list)
            tracked_tracks_dict = defaultdict(list)
            for track in self.tracked_tracks_dict[cls_id]:
                if not track.is_activated:
                    # previous tracks which are not active in the current frame are added in unconfirmed list
                    unconfirmed_dict[cls_id].append(track)
                else:
                    # Active tracks are added to the local list 'tracked_stracks'
                    tracked_tracks_dict[cls_id].append(track)
            """ Step 2: First association, with embedding"""
            # building tracking pool for the current frame
            track_pool_dict = defaultdict(list)
            track_pool_dict[cls_id] = joint_stracks(
                tracked_tracks_dict[cls_id], self.lost_tracks_dict[cls_id])

            # Predict the current location with KalmanFilter
            STrack.multi_predict(track_pool_dict[cls_id], self.motion)

            dists = matching.embedding_distance(
                track_pool_dict[cls_id], detections, metric=self.metric_type)
            dists = matching.fuse_motion(self.motion, dists,
                                         track_pool_dict[cls_id], detections)
            matches, u_track, u_detection = matching.linear_assignment(
                dists, thresh=self.tracked_thresh)

            for i_tracked, idet in matches:
                # i_tracked is the id of the track and idet is the detection
                track = track_pool_dict[cls_id][i_tracked]
                det = detections[idet]
                if track.state == TrackState.Tracked:
                    # If the track is active, add the detection to the track
                    track.update(detections[idet], self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    # We have obtained a detection from a track which is not active,
                    # hence put the track in refind_stracks list
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)

            # None of the steps below happen if there are no undetected tracks.
            """ Step 3: Second association, with IOU"""
            detections = [detections[i] for i in u_detection]
            r_tracked_stracks = []
            for i in u_track:
                if track_pool_dict[cls_id][i].state == TrackState.Tracked:
                    r_tracked_stracks.append(track_pool_dict[cls_id][i])

            dists = matching.iou_distance(r_tracked_stracks, detections)
            matches, u_track, u_detection = matching.linear_assignment(
                dists, thresh=self.r_tracked_thresh)

            for i_tracked, idet in matches:
                track = r_tracked_stracks[i_tracked]
                det = detections[idet]
                if track.state == TrackState.Tracked:
                    track.update(det, self.frame_id)
                    activated_tracks_dict[cls_id].append(track)
                else:
                    track.re_activate(det, self.frame_id, new_id=False)
                    refined_tracks_dict[cls_id].append(track)

            for it in u_track:
                track = r_tracked_stracks[it]
                if not track.state == TrackState.Lost:
                    track.mark_lost()
                    lost_tracks_dict[cls_id].append(track)
            '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
            detections = [detections[i] for i in u_detection]
            dists = matching.iou_distance(unconfirmed_dict[cls_id], detections)
            matches, u_unconfirmed, u_detection = matching.linear_assignment(
                dists, thresh=self.unconfirmed_thresh)
            for i_tracked, idet in matches:
                unconfirmed_dict[cls_id][i_tracked].update(detections[idet],
                                                           self.frame_id)
                activated_tracks_dict[cls_id].append(unconfirmed_dict[cls_id][
                    i_tracked])
            for it in u_unconfirmed:
                track = unconfirmed_dict[cls_id][it]
                track.mark_removed()
                removed_tracks_dict[cls_id].append(track)
            """ Step 4: Init new stracks"""
            for inew in u_detection:
                track = detections[inew]
                if track.score < self.det_thresh:
                    continue
                track.activate(self.motion, self.frame_id)
                activated_tracks_dict[cls_id].append(track)
            """ Step 5: Update state"""
            for track in self.lost_tracks_dict[cls_id]:
                if self.frame_id - track.end_frame > self.max_time_lost:
                    track.mark_removed()
                    removed_tracks_dict[cls_id].append(track)

            self.tracked_tracks_dict[cls_id] = [
                t for t in self.tracked_tracks_dict[cls_id]
                if t.state == TrackState.Tracked
            ]
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], activated_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id] = joint_stracks(
                self.tracked_tracks_dict[cls_id], refined_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.tracked_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id].extend(lost_tracks_dict[cls_id])
            self.lost_tracks_dict[cls_id] = sub_stracks(
                self.lost_tracks_dict[cls_id], self.removed_tracks_dict[cls_id])
            self.removed_tracks_dict[cls_id].extend(removed_tracks_dict[cls_id])
            self.tracked_tracks_dict[cls_id], self.lost_tracks_dict[
                cls_id] = remove_duplicate_stracks(
                    self.tracked_tracks_dict[cls_id],
                    self.lost_tracks_dict[cls_id])

            # get scores of lost tracks
            output_tracks_dict[cls_id] = [
                track for track in self.tracked_tracks_dict[cls_id]
                if track.is_activated
            ]

        return output_tracks_dict