“ec1876794b734f8bac59d81f1a696f23f69cfd66”上不存在“doc/git@gitcode.net:paddlepaddle/FluidDoc.git”
analyzer_ner_tester.cc 6.0 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
L
luotao1 已提交
16 17 18

namespace paddle {
namespace inference {
19
using contrib::AnalysisConfig;
L
luotao1 已提交
20 21 22 23 24 25

struct DataRecord {
  std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
  std::vector<size_t> lod;  // two inputs have the same lod info.
  size_t batch_iter{0};
  size_t batch_size{1};
L
luotao1 已提交
26
  size_t num_samples;  // total number of samples
L
luotao1 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= word_data_all.size()) {
      data.word_data_all.assign(word_data_all.begin() + batch_iter,
                                word_data_all.begin() + batch_end);
      data.mention_data_all.assign(mention_data_all.begin() + batch_iter,
                                   mention_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod.push_back(0);
      CHECK(!data.word_data_all.empty());
      CHECK(!data.mention_data_all.empty());
      CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
      for (size_t j = 0; j < data.word_data_all.size(); j++) {
        // calculate lod
        data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      // load word data
      std::vector<int64_t> word_data;
      split_to_int64(data[1], ' ', &word_data);
      // load mention data
      std::vector<int64_t> mention_data;
      split_to_int64(data[3], ' ', &mention_data);
      word_data_all.push_back(std::move(word_data));
      mention_data_all.push_back(std::move(mention_data));
    }
L
luotao1 已提交
71
    num_samples = num_lines;
L
luotao1 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_word_tensor, lod_mention_tensor;
  lod_word_tensor.name = "word";
  lod_mention_tensor.name = "mention";
  auto one_batch = data->NextBatch();
  int size = one_batch.lod[one_batch.lod.size() - 1];  // token batch size
  lod_word_tensor.shape.assign({size, 1});
  lod_word_tensor.lod.assign({one_batch.lod});
  lod_mention_tensor.shape.assign({size, 1});
  lod_mention_tensor.lod.assign({one_batch.lod});
  // assign data
Z
Zhen Wang 已提交
87 88
  TensorAssignData<int64_t>(&lod_word_tensor, one_batch.word_data_all);
  TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.mention_data_all);
L
luotao1 已提交
89 90 91 92 93 94 95
  // Set inputs.
  input_slots->assign({lod_word_tensor, lod_mention_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::INT64;
  }
}

Y
Yan Chunwei 已提交
96
void SetConfig(contrib::AnalysisConfig *cfg) {
T
Tao Luo 已提交
97 98 99 100 101 102 103
  cfg->prog_file = FLAGS_infer_model + "/__model__";
  cfg->param_file = FLAGS_infer_model + "/param";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->specify_input_name = true;
  cfg->enable_ir_optim = true;
}
L
luotao1 已提交
104

T
Tao Luo 已提交
105
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
L
luotao1 已提交
106
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
T
Tao Luo 已提交
107 108 109 110 111 112
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
L
luotao1 已提交
113
  }
T
Tao Luo 已提交
114
}
L
luotao1 已提交
115

T
Tao Luo 已提交
116 117
// Easy for profiling independently.
TEST(Analyzer_Chinese_ner, profile) {
Y
Yan Chunwei 已提交
118
  contrib::AnalysisConfig cfg;
T
Tao Luo 已提交
119 120
  SetConfig(&cfg);
  std::vector<PaddleTensor> outputs;
121

T
Tao Luo 已提交
122 123
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
124 125
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
126

T
Tao Luo 已提交
127 128 129 130 131 132 133 134 135 136
  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    // the first inference result
    const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
                                           48, 39, 38, 16, 25};
    PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
    size_t size = GetSize(outputs[0]);
    PADDLE_ENFORCE_GT(size, 0);
    int64_t *result = static_cast<int64_t *>(outputs[0].data.data());
    for (size_t i = 0; i < std::min(11UL, size); i++) {
      EXPECT_EQ(result[i], chinese_ner_result_data[i]);
137 138
    }
  }
L
luotao1 已提交
139 140
}

T
Tao Luo 已提交
141 142
// Check the fuse status
TEST(Analyzer_Chinese_ner, fuse_statis) {
Y
Yan Chunwei 已提交
143
  contrib::AnalysisConfig cfg;
T
Tao Luo 已提交
144
  SetConfig(&cfg);
145

T
Tao Luo 已提交
146
  int num_ops;
147 148 149
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
T
Tao Luo 已提交
150 151 152 153 154 155 156 157 158
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
  EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 2);
  EXPECT_EQ(num_ops, 14);
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_Chinese_ner, compare) {
Y
Yan Chunwei 已提交
159
  contrib::AnalysisConfig cfg;
T
Tao Luo 已提交
160 161 162 163
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
164 165
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
T
Tao Luo 已提交
166
}
L
luotao1 已提交
167 168 169

}  // namespace inference
}  // namespace paddle