Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
07cb64ad
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
07cb64ad
编写于
8月 31, 2018
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unit-test for chinese_ner
上级
823c4f87
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
271 addition
and
87 deletion
+271
-87
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+23
-12
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+6
-6
paddle/fluid/inference/analysis/chinese_ner_tester.cc
paddle/fluid/inference/analysis/chinese_ner_tester.cc
+154
-0
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+69
-63
paddle/fluid/inference/api/api_impl.h
paddle/fluid/inference/api/api_impl.h
+3
-1
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+16
-5
未找到文件。
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
07cb64ad
...
...
@@ -40,23 +40,20 @@ function (inference_analysis_test TARGET)
endif
(
WITH_TESTING
)
endfunction
(
inference_analysis_test
)
set
(
DITU_RNN_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz"
)
set
(
DITU_RNN_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz"
)
set
(
DITU_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/install/ditu_rnn"
CACHE PATH
"Ditu RNN model and data root."
FORCE
)
set
(
DITU_RNN_MODEL
${
DITU_INSTALL_DIR
}
/model
)
set
(
DITU_RNN_DATA
${
DITU_INSTALL_DIR
}
/data.txt
)
function
(
inference_download_and_uncompress target url gz_filename
)
function
(
inference_download_and_uncompress install_dir url gz_filename
)
message
(
STATUS
"Download inference test stuff
${
gz_filename
}
from
${
url
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
DITU_INSTALL_DIR
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
DITU_INSTALL_DIR
}
&& wget -q
${
url
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
DITU_INSTALL_DIR
}
&& tar xzf
${
gz_filename
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
install_dir
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
install_dir
}
&& wget -q
${
url
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
install_dir
}
&& tar xzf
${
gz_filename
}
"
)
message
(
STATUS
"finish downloading
${
gz_filename
}
"
)
endfunction
(
inference_download_and_uncompress
)
set
(
DITU_RNN_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz"
)
set
(
DITU_RNN_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz"
)
set
(
DITU_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/ditu_rnn"
CACHE PATH
"Ditu RNN model and data root."
FORCE
)
if
(
NOT EXISTS
${
DITU_INSTALL_DIR
}
)
inference_download_and_uncompress
(
ditu_rnn_model
${
DITU_RNN_MODEL_URL
}
"ditu_rnn_fluid%2Fmodel.tar.gz"
)
inference_download_and_uncompress
(
ditu_rnn_data
${
DITU_RNN_DATA_URL
}
"ditu_rnn_fluid%2Fdata.txt.tar.gz"
)
inference_download_and_uncompress
(
${
DITU_INSTALL_DIR
}
${
DITU_RNN_MODEL_URL
}
"ditu_rnn_fluid%2Fmodel.tar.gz"
)
inference_download_and_uncompress
(
${
DITU_INSTALL_DIR
}
${
DITU_RNN_DATA_URL
}
"ditu_rnn_fluid%2Fdata.txt.tar.gz"
)
endif
()
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc
...
...
@@ -87,3 +84,17 @@ inference_analysis_test(test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_
inference_analysis_test
(
test_pass_manager SRCS pass_manager_tester.cc
)
inference_analysis_test
(
test_tensorrt_subgraph_node_mark_pass SRCS tensorrt_subgraph_node_mark_pass_tester.cc
)
inference_analysis_test
(
test_model_store_pass SRCS model_store_pass_tester.cc
)
set
(
CHINESE_NER_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/chinese_ner_model.tar.gz"
)
set
(
CHINESE_NER_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/chinese_ner-data.txt.tar.gz"
)
set
(
CHINESE_NER_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/chinese_ner"
CACHE PATH
"Chinese ner model and data root."
FORCE
)
if
(
NOT EXISTS
${
CHINESE_NER_INSTALL_DIR
}
)
inference_download_and_uncompress
(
${
CHINESE_NER_INSTALL_DIR
}
${
CHINESE_NER_MODEL_URL
}
"chinese_ner_model.tar.gz"
)
inference_download_and_uncompress
(
${
CHINESE_NER_INSTALL_DIR
}
${
CHINESE_NER_DATA_URL
}
"chinese_ner-data.txt.tar.gz"
)
endif
()
inference_analysis_test
(
test_chinese_ner SRCS chinese_ner_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
--infer_model=
${
CHINESE_NER_INSTALL_DIR
}
/model
--infer_data=
${
CHINESE_NER_INSTALL_DIR
}
/data.txt
)
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
07cb64ad
...
...
@@ -196,13 +196,13 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
minute_tensor
.
lod
.
assign
({
one_batch
.
lod3
});
// clang-format on
// assign data
TensorAssignData
(
&
lod_attention_tensor
,
std
::
vector
<
std
::
vector
<
float
>>
({{
0
,
0
}}));
TensorAssignData
<
float
>
(
&
lod_attention_tensor
,
std
::
vector
<
std
::
vector
<
float
>>
({{
0
,
0
}}));
std
::
vector
<
float
>
tmp_zeros
(
batch_size
*
15
,
0.
);
TensorAssignData
(
&
init_zero_tensor
,
{
tmp_zeros
});
TensorAssignData
(
&
lod_tensor_tensor
,
one_batch
.
rnn_link_data
);
TensorAssignData
(
&
week_tensor
,
one_batch
.
rnn_week_datas
);
TensorAssignData
(
&
minute_tensor
,
one_batch
.
rnn_minute_datas
);
TensorAssignData
<
float
>
(
&
init_zero_tensor
,
{
tmp_zeros
});
TensorAssignData
<
float
>
(
&
lod_tensor_tensor
,
one_batch
.
rnn_link_data
);
TensorAssignData
<
float
>
(
&
week_tensor
,
one_batch
.
rnn_week_datas
);
TensorAssignData
<
float
>
(
&
minute_tensor
,
one_batch
.
rnn_minute_datas
);
// Set inputs.
auto
init_zero_tensor1
=
init_zero_tensor
;
init_zero_tensor1
.
name
=
"hidden_init"
;
...
...
paddle/fluid/inference/analysis/chinese_ner_tester.cc
0 → 100644
浏览文件 @
07cb64ad
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string
(
infer_model
,
""
,
"model path"
);
DEFINE_string
(
infer_data
,
""
,
"data path"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
namespace
paddle
{
namespace
inference
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
word_data_all
,
mention_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
rnn_word_datas
,
rnn_mention_datas
;
std
::
vector
<
size_t
>
lod
;
// two inputs have the same lod info.
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
Load
(
path
);
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
word_data_all
.
size
())
{
data
.
word_data_all
.
assign
(
word_data_all
.
begin
()
+
batch_iter
,
word_data_all
.
begin
()
+
batch_end
);
data
.
mention_data_all
.
assign
(
mention_data_all
.
begin
()
+
batch_iter
,
mention_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod
.
push_back
(
0
);
CHECK
(
!
data
.
word_data_all
.
empty
());
CHECK
(
!
data
.
mention_data_all
.
empty
());
CHECK_EQ
(
data
.
word_data_all
.
size
(),
data
.
mention_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
word_data_all
.
size
();
j
++
)
{
data
.
rnn_word_datas
.
push_back
(
data
.
word_data_all
[
j
]);
data
.
rnn_mention_datas
.
push_back
(
data
.
mention_data_all
[
j
]);
// calculate lod
data
.
lod
.
push_back
(
data
.
lod
.
back
()
+
data
.
word_data_all
[
j
].
size
());
}
}
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
int
num_lines
=
0
;
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
';'
,
&
data
);
// load word data
std
::
vector
<
int64_t
>
word_data
;
split_to_int64
(
data
[
1
],
' '
,
&
word_data
);
// load mention data
std
::
vector
<
int64_t
>
mention_data
;
split_to_int64
(
data
[
3
],
' '
,
&
mention_data
);
word_data_all
.
push_back
(
std
::
move
(
word_data
));
mention_data_all
.
push_back
(
std
::
move
(
mention_data
));
}
}
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
PaddleTensor
lod_word_tensor
,
lod_mention_tensor
;
lod_word_tensor
.
name
=
"word"
;
lod_mention_tensor
.
name
=
"mention"
;
auto
one_batch
=
data
->
NextBatch
();
int
size
=
one_batch
.
lod
[
one_batch
.
lod
.
size
()
-
1
];
// token batch size
lod_word_tensor
.
shape
.
assign
({
size
,
1
});
lod_word_tensor
.
lod
.
assign
({
one_batch
.
lod
});
lod_mention_tensor
.
shape
.
assign
({
size
,
1
});
lod_mention_tensor
.
lod
.
assign
({
one_batch
.
lod
});
// assign data
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
rnn_word_datas
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
rnn_mention_datas
);
// Set inputs.
input_slots
->
assign
({
lod_word_tensor
,
lod_mention_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
tensor
.
dtype
=
PaddleDType
::
INT64
;
}
}
// the first inference result
const
int
chinese_ner_result_data
[]
=
{
30
,
45
,
41
,
48
,
17
,
26
,
48
,
39
,
38
,
16
,
25
};
void
TestChineseNERPrediction
()
{
NativeConfig
config
;
config
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_model
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
FLAGS_batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
LOG
(
INFO
)
<<
"===========profile result==========="
;
LOG
(
INFO
)
<<
"batch_size: "
<<
FLAGS_batch_size
<<
", repeat: "
<<
FLAGS_repeat
<<
", latency: "
<<
timer
.
toc
()
/
FLAGS_repeat
<<
"ms"
;
LOG
(
INFO
)
<<
"====================================="
;
PADDLE_ENFORCE
(
outputs
.
size
(),
1UL
);
auto
&
out
=
outputs
[
0
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_GT
(
size
,
0
);
int64_t
*
result
=
static_cast
<
int64_t
*>
(
out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
std
::
min
(
11UL
,
size
);
i
++
)
{
PADDLE_ENFORCE
(
result
[
i
],
chinese_ner_result_data
[
i
]);
}
}
// Directly infer with the original model.
TEST
(
Analyzer
,
Chinese_ner
)
{
TestChineseNERPrediction
();
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
07cb64ad
...
...
@@ -62,14 +62,14 @@ void NativePaddlePredictor::PrepareFeedFetch() {
for
(
auto
*
op
:
inference_program_
->
Block
(
0
).
AllOps
())
{
if
(
op
->
Type
()
==
"feed"
)
{
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
if
(
feeds_
.
size
()
<=
idx
)
{
if
(
feeds_
.
size
()
<=
(
size_t
)
idx
)
{
feeds_
.
resize
(
idx
+
1
);
}
feeds_
[
idx
]
=
op
;
feed_names_
[
op
->
Output
(
"Out"
)[
0
]]
=
idx
;
}
else
if
(
op
->
Type
()
==
"fetch"
)
{
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
if
(
fetchs_
.
size
()
<=
idx
)
{
if
(
fetchs_
.
size
()
<=
(
size_t
)
idx
)
{
fetchs_
.
resize
(
idx
+
1
);
}
fetchs_
[
idx
]
=
op
;
...
...
@@ -222,6 +222,62 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
}
return
true
;
}
template
<
typename
T
>
void
NativePaddlePredictor
::
GetFetchOne
(
const
framework
::
LoDTensor
&
fetch
,
PaddleTensor
*
output
)
{
std
::
vector
<
int
>
shape
;
auto
dims_i
=
fetch
.
dims
();
auto
lod
=
fetch
.
lod
();
const
T
*
output_ptr
=
fetch
.
data
<
T
>
();
auto
num
=
fetch
.
numel
();
std
::
vector
<
T
>
data
;
if
(
0
==
lod
.
size
())
{
std
::
copy
(
output_ptr
,
output_ptr
+
num
,
std
::
back_inserter
(
data
));
for
(
int
j
=
0
;
j
<
dims_i
.
size
();
++
j
)
{
shape
.
push_back
(
dims_i
[
j
]);
}
}
else
{
// for batch detection
// image[0] -> output[0] shape {145, 6}
// image[1] -> output[1] shape {176, 6}
// then,
// the batch output shape {321, 6}
// the lod {{0, 145, 321}}
// so we should append output[0] to {176, 6}
size_t
max_dim
=
0
;
for
(
size_t
j
=
1
;
j
<
lod
[
0
].
size
();
j
++
)
{
max_dim
=
std
::
max
(
max_dim
,
lod
[
0
][
j
]
-
lod
[
0
][
j
-
1
]);
}
size_t
common_dim
=
lod
[
0
].
back
()
==
0
?
0
:
num
/
lod
[
0
].
back
();
if
(
max_dim
>
0
)
{
data
.
resize
((
lod
[
0
].
size
()
-
1
)
*
max_dim
*
common_dim
,
0
);
}
for
(
size_t
j
=
1
;
j
<
lod
[
0
].
size
();
j
++
)
{
size_t
start
=
lod
[
0
][
j
-
1
]
*
common_dim
;
size_t
end
=
lod
[
0
][
j
]
*
common_dim
;
if
(
end
>
start
)
{
std
::
copy
(
output_ptr
+
start
,
output_ptr
+
end
,
data
.
begin
()
+
(
j
-
1
)
*
max_dim
*
common_dim
);
}
}
shape
.
push_back
(
lod
[
0
].
size
()
-
1
);
shape
.
push_back
(
max_dim
);
for
(
int
j
=
1
;
j
<
dims_i
.
size
();
++
j
)
{
shape
.
push_back
(
dims_i
[
j
]);
}
}
output
->
shape
=
shape
;
auto
&
buffer
=
output
->
data
;
if
(
buffer
.
empty
()
||
buffer
.
length
()
<
sizeof
(
T
)
*
data
.
size
())
{
buffer
.
Resize
(
sizeof
(
T
)
*
data
.
size
());
}
std
::
memcpy
(
buffer
.
data
(),
data
.
data
(),
buffer
.
length
());
// copy LoD
for
(
const
auto
&
level
:
fetch
.
lod
())
{
output
->
lod
.
emplace_back
(
level
);
}
}
bool
NativePaddlePredictor
::
GetFetch
(
std
::
vector
<
PaddleTensor
>
*
outputs
,
framework
::
Scope
*
scope
)
{
...
...
@@ -229,70 +285,20 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
outputs
->
resize
(
fetchs_
.
size
());
for
(
size_t
i
=
0
;
i
<
fetchs_
.
size
();
++
i
)
{
int
idx
=
boost
::
get
<
int
>
(
fetchs_
[
i
]
->
GetAttr
(
"col"
));
PADDLE_ENFORCE
(
idx
==
i
);
framework
::
LoDTensor
&
output
=
PADDLE_ENFORCE
(
(
size_t
)
idx
==
i
);
framework
::
LoDTensor
&
fetch
=
framework
::
GetFetchVariable
(
*
scope
,
"fetch"
,
idx
);
// TODO(panyx0718): Support fetch of other types.
if
(
output
.
type
()
!=
typeid
(
float
))
{
LOG
(
ERROR
)
<<
"only support fetching float now."
;
return
false
;
}
std
::
vector
<
int
>
shape
;
auto
dims_i
=
output
.
dims
();
auto
lod
=
output
.
lod
();
const
float
*
output_ptr
=
output
.
data
<
float
>
();
// const int64_t* output_ptr = fetchs[i].data<int64_t>();
auto
num
=
output
.
numel
();
std
::
vector
<
float
>
data
;
if
(
0
==
lod
.
size
())
{
std
::
copy
(
output_ptr
,
output_ptr
+
num
,
std
::
back_inserter
(
data
));
for
(
int
j
=
0
;
j
<
dims_i
.
size
();
++
j
)
{
shape
.
push_back
(
dims_i
[
j
]);
}
auto
type
=
fetch
.
type
();
auto
output
=
&
(
outputs
->
at
(
i
));
if
(
type
==
typeid
(
float
))
{
GetFetchOne
<
float
>
(
fetch
,
output
);
output
->
dtype
=
PaddleDType
::
FLOAT32
;
}
else
if
(
type
==
typeid
(
int64_t
))
{
GetFetchOne
<
int64_t
>
(
fetch
,
output
);
output
->
dtype
=
PaddleDType
::
INT64
;
}
else
{
// for batch detection
// image[0] -> output[0] shape {145, 6}
// image[1] -> output[1] shape {176, 6}
// then,
// the batch output shape {321, 6}
// the lod {{0, 145, 321}}
// so we should append output[0] to {176, 6}
size_t
max_dim
=
0
;
for
(
size_t
j
=
1
;
j
<
lod
[
0
].
size
();
j
++
)
{
max_dim
=
std
::
max
(
max_dim
,
lod
[
0
][
j
]
-
lod
[
0
][
j
-
1
]);
}
size_t
common_dim
=
lod
[
0
].
back
()
==
0
?
0
:
num
/
lod
[
0
].
back
();
if
(
max_dim
>
0
)
{
data
.
resize
((
lod
[
0
].
size
()
-
1
)
*
max_dim
*
common_dim
,
0
);
}
for
(
size_t
j
=
1
;
j
<
lod
[
0
].
size
();
j
++
)
{
size_t
start
=
lod
[
0
][
j
-
1
]
*
common_dim
;
size_t
end
=
lod
[
0
][
j
]
*
common_dim
;
if
(
end
>
start
)
{
std
::
copy
(
output_ptr
+
start
,
output_ptr
+
end
,
data
.
begin
()
+
(
j
-
1
)
*
max_dim
*
common_dim
);
}
}
shape
.
push_back
(
lod
[
0
].
size
()
-
1
);
shape
.
push_back
(
max_dim
);
for
(
int
j
=
1
;
j
<
dims_i
.
size
();
++
j
)
{
shape
.
push_back
(
dims_i
[
j
]);
}
}
outputs
->
at
(
i
).
shape
=
shape
;
auto
&
buffer
=
outputs
->
at
(
i
).
data
;
if
(
buffer
.
empty
()
||
buffer
.
length
()
<
sizeof
(
float
)
*
data
.
size
())
{
buffer
.
Resize
(
sizeof
(
float
)
*
data
.
size
());
}
std
::
memcpy
(
buffer
.
data
(),
data
.
data
(),
buffer
.
length
());
// copy LoD
for
(
const
auto
&
level
:
output
.
lod
())
{
outputs
->
at
(
i
).
lod
.
emplace_back
(
level
);
LOG
(
ERROR
)
<<
"unknown type, only support float32 and int64 now."
;
}
outputs
->
at
(
i
).
dtype
=
PaddleDType
::
FLOAT32
;
// TODO(panyx0718): support other types? fill tensor name? avoid a copy.
}
return
true
;
}
...
...
paddle/fluid/inference/api/api_impl.h
浏览文件 @
07cb64ad
...
...
@@ -51,7 +51,9 @@ class NativePaddlePredictor : public PaddlePredictor {
framework
::
Scope
*
scope
);
bool
GetFetch
(
std
::
vector
<
PaddleTensor
>
*
output_data
,
framework
::
Scope
*
scope
);
template
<
typename
T
>
void
GetFetchOne
(
const
framework
::
LoDTensor
&
fetchs
,
PaddleTensor
*
output_data
);
void
PrepareFeedFetch
();
NativeConfig
config_
;
...
...
paddle/fluid/inference/api/helper.h
浏览文件 @
07cb64ad
...
...
@@ -68,6 +68,13 @@ static void split_to_float(const std::string &str, char sep,
std
::
transform
(
pieces
.
begin
(),
pieces
.
end
(),
std
::
back_inserter
(
*
fs
),
[](
const
std
::
string
&
v
)
{
return
std
::
stof
(
v
);
});
}
static
void
split_to_int64
(
const
std
::
string
&
str
,
char
sep
,
std
::
vector
<
int64_t
>
*
is
)
{
std
::
vector
<
std
::
string
>
pieces
;
split
(
str
,
sep
,
&
pieces
);
std
::
transform
(
pieces
.
begin
(),
pieces
.
end
(),
std
::
back_inserter
(
*
is
),
[](
const
std
::
string
&
v
)
{
return
std
::
stoi
(
v
);
});
}
template
<
typename
T
>
std
::
string
to_string
(
const
std
::
vector
<
T
>
&
vec
)
{
std
::
stringstream
ss
;
...
...
@@ -84,14 +91,18 @@ template <>
std
::
string
to_string
<
std
::
vector
<
std
::
vector
<
float
>>>
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
vec
);
// clang-format off
static
void
TensorAssignData
(
PaddleTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
float
>>
&
data
)
{
template
<
typename
T
>
static
void
TensorAssignData
(
PaddleTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
T
>>
&
data
)
{
// Assign buffer
int
dim
=
std
::
accumulate
(
tensor
->
shape
.
begin
(),
tensor
->
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
tensor
->
data
.
Resize
(
sizeof
(
float
)
*
dim
);
int
dim
=
std
::
accumulate
(
tensor
->
shape
.
begin
(),
tensor
->
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
tensor
->
data
.
Resize
(
sizeof
(
T
)
*
dim
);
int
c
=
0
;
for
(
const
auto
&
f
:
data
)
{
for
(
float
v
:
f
)
{
static_cast
<
float
*>
(
tensor
->
data
.
data
())[
c
++
]
=
v
;
}
for
(
T
v
:
f
)
{
static_cast
<
T
*>
(
tensor
->
data
.
data
())[
c
++
]
=
v
;
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录