README.md 15.1 KB
Newer Older
J
JYChen 已提交
1 2
简体中文 | [English](README_en.md)

Y
YixinKristy 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# 关键点检测系列模型

<div align="center">
  <img src="./football_keypoint.gif" width='800'/>
</div>

## 目录
- [简介](#简介)
- [模型推荐](#模型推荐)
- [模型库](#模型库)
- [快速开始](#快速开始)
  - [环境安装](#1环境安装)
  - [数据准备](#2数据准备)
  - [训练与测试](#3训练与测试)
    - [单卡训练](#单卡训练)
    - [多卡训练](#多卡训练)
    - [模型评估](#模型评估)
    - [模型预测](#模型预测)
    - [模型部署](#模型部署)
      - [Top-Down模型联合部署](#top-down模型联合部署)
      - [Bottom-Up模型独立部署](#bottom-up模型独立部署)
      - [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署预测)
25 26 27 28 29



## 简介

Y
YixinKristy 已提交
30
PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包含Top-Down、Bottom-Up两套方案,Top-Down先检测主体,再检测局部关键点,优点是精度较高,缺点是速度会随着检测对象的个数增加,Bottom-Up先检测关键点再组合到对应的部位上,优点是速度快,与检测对象个数无关,缺点是精度较低。
31

Y
YixinKristy 已提交
32 33 34 35 36 37 38 39 40 41
同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md),以满足用户的不同需求。

## 模型推荐
### 移动端模型推荐


|检测模型| 关键点模型  | 输入尺寸 | COCO数据集精度| 平均推理耗时 (FP16)  | 模型权重 | Paddle-Lite部署模型(FP16)|
| :----| :------------------------ | :-------:  | :------: | :------: | :---: | :---: | 
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[PP-TinyPose](./tinypose_128x96.yml)  | 检测:192x192<br>关键点:128x96 | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) |[PP-TinyPose](./tinypose_256x192.yml)| 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms  |  [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)| [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
Z
zhiboniu 已提交
42

Y
YixinKristy 已提交
43
*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
Z
zhiboniu 已提交
44

Y
YixinKristy 已提交
45 46 47 48 49
### 服务端模型推荐
|检测模型| 关键点模型  | 输入尺寸 | COCO数据集精度| 模型权重 | 
| :----| :------------------------ | :-------:  | :------: | :------: |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_384x288.yml)| 检测:640x640<br>关键点:384x288 | 检测mAP:49.5<br>关键点AP:77.8 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams)  |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640<br>关键点:256x192 | 检测mAP:49.5<br>关键点AP:76.9 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams)  |
50 51


Y
YixinKristy 已提交
52
##  模型库
Z
zhiboniu 已提交
53
COCO数据集
Y
YixinKristy 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67
| 模型              |  方案              |输入尺寸 | AP(coco val) |                           模型下载                           | 配置文件 |                                                   
| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------| ------- |
| HigherHRNet-w32       |Bottom-Up| 512      |     67.1     | [higherhrnet_hrnet_w32_512.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512.yml)       |
| HigherHRNet-w32       | Bottom-Up| 640      |     68.3     | [higherhrnet_hrnet_w32_640.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_640.yml)       |
| HigherHRNet-w32+SWAHR |Bottom-Up|  512      |     68.9     | [higherhrnet_hrnet_w32_512_swahr.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml) |
| HRNet-w32             | Top-Down| 256x192  |     76.9     | [hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) | [config](./hrnet/hrnet_w32_256x192.yml)                     |
| HRNet-w32             |Top-Down| 384x288  |     77.8     | [hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) | [config](./hrnet/hrnet_w32_384x288.yml)                     |
| HRNet-w32+DarkPose             |Top-Down| 256x192  |     78.0     | [dark_hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) | [config](./hrnet/dark_hrnet_w32_256x192.yml)                     |
| HRNet-w32+DarkPose             |Top-Down| 384x288  |     78.3     | [dark_hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) | [config](./hrnet/dark_hrnet_w32_384x288.yml)                     |
| WiderNaiveHRNet-18         | Top-Down|256x192  |     67.6(+DARK 68.4)     | [wider_naive_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   |Top-Down| 256x192  |     66.5     | [lite_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   |Top-Down| 384x288  |     69.7     | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml)     |
| LiteHRNet-30                   | Top-Down|256x192  |     69.4     | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml)     |
| LiteHRNet-30                   |Top-Down| 384x288  |     72.5     | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml)     |
68 69


Z
zhiboniu 已提交
70
备注: Top-Down模型测试AP结果基于GroundTruth标注框
71

Z
zhiboniu 已提交
72
MPII数据集
Y
YixinKristy 已提交
73 74 75
| 模型  | 方案| 输入尺寸 | PCKh(Mean) | PCKh(Mean@0.1) |                           模型下载                           | 配置文件                                     |
| :---- | ---|----- | :--------: | :------------: | :----------------------------------------------------------: | -------------------------------------------- |
| HRNet-w32 | Top-Down|256x256  |    90.6    |      38.5      | [hrnet_w32_256x256_mpii.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x256_mpii.pdparams) | [config](./hrnet/hrnet_w32_256x256_mpii.yml) |
Z
zhiboniu 已提交
76 77


Y
YixinKristy 已提交
78 79 80 81 82
我们同时推出了基于LiteHRNet(Top-Down)针对移动端设备优化的实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md), 欢迎体验。
| 模型  | 输入尺寸 | AP (COCO Val) | 单人推理耗时 (FP32)| 单人推理耗时(FP16) | 配置文件 | 模型权重 | 预测部署模型 | Paddle-Lite部署模型(FP32) | Paddle-Lite部署模型(FP16)|
| :------------------------ | :-------:  | :------: | :------: |:---: | :---: | :---: | :---: | :---: | :---: |
| PP-TinyPose | 128*96 | 58.1 | 4.57ms | 3.27ms | [Config](./tinypose_128x96.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| PP-TinyPose | 256*192 | 68.8 | 14.07ms | 8.33ms | [Config](./tinypose_256x192.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
J
JYChen 已提交
83

84 85 86 87
## 快速开始

### 1、环境安装

88
​    请参考PaddleDetection [安装文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/INSTALL_cn.md)正确安装PaddlePaddle和PaddleDetection即可。
89 90 91 92


### 2、数据准备

93 94
​    目前KeyPoint模型支持[COCO](https://cocodataset.org/#keypoints-2017)数据集和[MPII](http://human-pose.mpi-inf.mpg.de/#overview)数据集,数据集的准备方式请参考[关键点数据准备](../../docs/tutorials/PrepareKeypointDataSet_cn.md)

Z
zhiboniu 已提交
95 96
​    关于config配置文件内容说明请参考[关键点配置文件说明](../../docs/tutorials/KeyPointConfigGuide_cn.md)

97

98
  - 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。
99 100 101 102


### 3、训练与测试

Y
YixinKristy 已提交
103
#### 单卡训练
104 105

```shell
106
#COCO DataSet
107
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
108 109

#MPII DataSet
110
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
111 112
```

Y
YixinKristy 已提交
113
#### 多卡训练
114 115

```shell
116
#COCO DataSet
117
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
118 119

#MPII DataSet
120
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
121 122
```

Y
YixinKristy 已提交
123
#### 模型评估
124 125

```shell
126
#COCO DataSet
127
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
128 129 130

#MPII DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
131 132 133

#当只需要保存评估预测的结果时,可以通过设置save_prediction_only参数实现,评估预测结果默认保存在output/keypoints_results.json文件中
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml --save_prediction_only
134 135
```

Y
YixinKristy 已提交
136
#### 模型预测
137

Z
zhiboniu 已提交
138 139
​    注意:top-down模型只支持单人截图预测,如需使用多人图,请使用[联合部署推理]方式。或者使用bottom-up模型。

140 141 142 143
```shell
CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=./output/higherhrnet_hrnet_w32_512/model_final.pdparams --infer_dir=../images/ --draw_threshold=0.5 --save_txt=True
```

Y
YixinKristy 已提交
144 145 146 147 148 149 150 151
#### 模型部署
##### Top-Down模型联合部署
```shell
#导出检测模型
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams 

#导出关键点模型
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
152

Y
YixinKristy 已提交
153 154 155 156
#detector 检测 + keypoint top-down模型联合部署(联合推理只支持top-down方式)
python deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4  --device=gpu
```
##### Bottom-Up模型独立部署
157 158 159 160 161
```shell
#导出模型
python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=output/higherhrnet_hrnet_w32_512/model_final.pdparams

#部署推理
Z
zhiboniu 已提交
162
python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_hrnet_w32_512/ --image_file=./demo/000000014439_640x640.jpg --device=gpu --threshold=0.5
163 164

```
Y
YixinKristy 已提交
165
##### 与多目标跟踪模型FairMOT联合部署预测
166 167 168 169 170 171 172 173 174

```shell
#导出FairMOT跟踪模型
python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams

#用导出的跟踪和关键点模型Python联合预测
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
```
**注意:**
Y
YixinKristy 已提交
175
 跟踪模型导出教程请参考[文档](../mot/README.md)
Z
zhiboniu 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

## 引用
```
@inproceedings{cheng2020bottom,
  title={HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation},
  author={Bowen Cheng and Bin Xiao and Jingdong Wang and Honghui Shi and Thomas S. Huang and Lei Zhang},
  booktitle={CVPR},
  year={2020}
}

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{wang2019deep,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Wang, Jingdong and Sun, Ke and Cheng, Tianheng and Jiang, Borui and Deng, Chaorui and Zhao, Yang and Liu, Dong and Mu, Yadong and Tan, Mingkui and Wang, Xinggang and Liu, Wenyu and Xiao, Bin},
  journal={TPAMI},
  year={2019}
}

@InProceedings{Zhang_2020_CVPR,
    author = {Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
    title = {Distribution-Aware Coordinate Representation for Human Pose Estimation},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}
208 209 210 211 212 213 214

@inproceedings{Yulitehrnet21,
  title={Lite-HRNet: A Lightweight High-Resolution Network},
  author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
  booktitle={CVPR},
  year={2021}
}
215
```