layers.py 199.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
Q
qijun 已提交
57
    'classification_cost',
58
    'LayerOutput',
Q
qijun 已提交
59 60 61 62 63 64
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
Q
qijun 已提交
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
Q
qijun 已提交
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
Q
qijun 已提交
78
    'sum_to_one_norm_layer',
G
guosheng 已提交
79
    'row_l2_norm_layer',
Q
qijun 已提交
80 81 82 83 84 85 86 87
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
88
    'gru_step_naive_layer',
Q
qijun 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
101
    'warp_ctc_layer',
Q
qijun 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
115
    'printer_layer',
Q
qijun 已提交
116
    'print_layer',
Y
yuan 已提交
117
    'priorbox_layer',
118
    'cross_channel_norm_layer',
119 120
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
121
    'roi_pool_layer',
Q
qijun 已提交
122
    'spp_layer',
D
dangqingqing 已提交
123
    'pad_layer',
L
Luo Tao 已提交
124
    'eos_layer',
125
    'smooth_l1_cost',
126
    'layer_support',
W
wwhu 已提交
127
    'multiplex_layer',
D
dangqingqing 已提交
128
    'row_conv_layer',
129
    'dropout_layer',
130
    'prelu_layer',
131
    'gated_unit_layer',
132
    'crop_layer',
133
    'sub_nested_seq_layer',
134
    'clip_layer',
135
    'slice_projection',
136
    'kmax_sequence_score_layer',
Q
qijun 已提交
137
]
Z
zhangjinchao01 已提交
138 139 140 141 142 143 144


class LayerType(object):
    """
    Layer type enumerations.
    """

145 146 147 148 149 150 151 152
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
153
    POOLING_AVG = 'average'
154
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
155
    COST = 'cost'
156 157
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
158
    HSIGMOID = 'hsigmoid'
159 160 161 162 163 164
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
165 166 167
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
168
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
169 170 171 172
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
173
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
174 175 176 177 178 179 180

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
181
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
182 183 184
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
185
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
186
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
187
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
188 189 190 191 192 193 194 195 196 197 198

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
199
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
200
    BLOCK_EXPAND = "blockexpand"
201
    MAXOUT = "maxout"
Q
qijun 已提交
202
    SPP_LAYER = "spp"
D
dangqingqing 已提交
203
    PAD_LAYER = "pad"
W
wwhu 已提交
204
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
205
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
206 207 208

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
209 210
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
211
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
212 213 214 215 216

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
217
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
218

219 220 221 222 223 224 225 226 227 228 229
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
230
    CROP_LAYER = 'crop'
C
caoying03 已提交
231
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
232
    CLIP_LAYER = 'clip'
Z
zhangjinchao01 已提交
233

234
    KMAX_SEQ_SCORE = 'kmax_seq_score'
Z
zhangjinchao01 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
256
    """
L
Luo Tao 已提交
257
    PaddlePaddle supports three sequence types:
258 259 260

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
261 262
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
263

L
Luo Tao 已提交
264
    Accordingly, AggregateLevel supports two modes:
265

L
Luo Tao 已提交
266
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
267
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
268 269
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
270
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
271 272 273
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
274 275
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
276 277 278
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
301
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
302 303
    """

Q
qijun 已提交
304 305 306 307 308 309 310 311 312
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
313
                 reverse=None):
Z
zhangjinchao01 已提交
314 315
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
316
        assert size is not None
Z
zhangjinchao01 已提交
317 318
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
319
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
320
        self.layer_type = layer_type
321 322
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
323 324 325 326 327 328 329 330
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
331
        self.reverse = reverse
Z
zhangjinchao01 已提交
332

333 334 335 336 337 338 339 340
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
341 342 343

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
344
DEVICE = 'device'
Z
zhangjinchao01 已提交
345 346 347


def layer_support(*attrs):
348
    attrs_list = list(attrs)
349
    attrs_list.append(DEVICE)
Q
qijun 已提交
350

Z
zhangjinchao01 已提交
351 352 353
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
354
            for attr in attrs_list:
Z
zhangjinchao01 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
371 372 373 374 375
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
415 416
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
417 418 419 420
    proj.origin = input
    return proj


421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
451 452
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
453 454 455 456
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
496 497
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
498 499 500 501
    proj.origin = input
    return proj


502
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
533
    :type input: LayerOutput
Z
zhangjinchao01 已提交
534 535
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
536
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
537 538 539 540 541 542
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
543 544
        if size is None:
            size = input.size - offset
Q
qijun 已提交
545
        proj = IdentityOffsetProjection(
546
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
547 548 549 550
        proj.origin = input
    return proj


551 552
def slice_projection(input, slices):
    """
553 554
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
555 556

    .. math::
557
       output = [input.slices()]
558 559 560 561 562 563 564 565 566 567 568 569 570 571

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
572
    :type slices: pair of int
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
612
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
613 614 615 616
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
617
@wrap_param_attr_default()
618
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
619
    """
620
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

634 635 636 637 638 639 640
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
641 642
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
643
    proj.origin = input
644
    return proj
Z
zhangjinchao01 已提交
645

646 647

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
648 649
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
650

Z
zhangjinchao01 已提交
651
    .. math::
L
Luo Tao 已提交
652
       out.row[i] += scale * (a.row[i] .* b.row[i])
653

Z
zhangjinchao01 已提交
654 655
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
656

Z
zhangjinchao01 已提交
657
    The example usage is:
658

Z
zhangjinchao01 已提交
659
    .. code-block:: python
660

L
Luo Tao 已提交
661
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
662

663 664 665 666
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
667 668
    :param scale: config scalar, default value is one.
    :type scale: float
669 670
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
671
    """
672 673 674
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
675
    a = kwargs.get('x', a)  # For Backward capacity.
676 677 678 679 680 681
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
682
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
683
    op.origin = [a, b]
684
    return op
Z
zhangjinchao01 已提交
685

686

Z
zhangjinchao01 已提交
687
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
688 689 690
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
727 728 729 730 731 732
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
746
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
763 764 765 766 767 768 769
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
770 771 772 773 774
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

775
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
784
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
785
            self.inputs.append(other)
786 787 788 789
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
790 791 792 793 794 795 796 797
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

798
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
799 800
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
801
        assert len(self.inputs) != 0
802
        ml = MixedLayer(
Z
zhangjinchao01 已提交
803 804 805 806 807
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
808
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
809 810 811
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
812
        self.finalized = True
Z
zhangjinchao01 已提交
813 814 815 816 817 818


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
819 820 821 822 823
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
868 869 870 871 872 873
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
874
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
875 876 877 878 879 880 881 882
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
883
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
884 885 886 887 888 889 890
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
891
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
892 893 894 895 896

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
897
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
898
    :type height: int|None
L
Luo Tao 已提交
899
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
900
    :type width: int|None
Z
zhangjinchao01 已提交
901 902
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
903
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
904 905
    :rtype: LayerOutput
    """
Q
qijun 已提交
906 907 908 909
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
910 911
        height=height,
        width=width,
Q
qijun 已提交
912
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
913 914 915 916 917 918

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
919
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
935
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
936 937
    :rtype: LayerOutput
    """
Q
qijun 已提交
938 939 940 941 942 943
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
944 945 946 947 948 949 950 951 952
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
953 954 955 956 957 958 959
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
960 961 962 963 964 965 966 967 968 969 970 971
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
972
    which is equal to:
Z
zhangjinchao01 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
995
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
996 997 998 999
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1000
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1001 1002
        param_attr = [param_attr]
    else:
1003
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1004 1005 1006 1007
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1008
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1009 1010

    Layer(
Q
qijun 已提交
1011 1012 1013
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1014 1015 1016 1017 1018
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1019 1020 1021
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1022

1023

1024
@wrap_name_default("print")
1025
def printer_layer(input, format=None, name=None):
1026 1027
    """
    Print the output value of input layers. This layer is useful for debugging.
1028 1029 1030 1031 1032

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1033
    :return: LayerOutput
1034
    """
1035 1036 1037 1038 1039
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1040 1041 1042

    Layer(
        name=name,
1043
        format=format,
1044
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1045
        inputs=[l.name for l in input], )
1046
    # this layer don't return anything, can not be input of other layer.
1047

X
xuwei06 已提交
1048 1049 1050 1051 1052 1053 1054
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1055

Y
yuan 已提交
1056
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1057
def priorbox_layer(input,
G
gaoyuan 已提交
1058
                   image,
G
gaoyuan 已提交
1059 1060 1061 1062 1063
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1064 1065 1066 1067 1068 1069 1070
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1071 1072
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1084
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1085 1086 1087
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1088
        inputs=[input.name, image.name],
Y
yuan 已提交
1089 1090 1091 1092 1093 1094
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1095 1096
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1097
        parents=[input, image],
G
gaoyuan 已提交
1098 1099 1100
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1118 1119
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1120
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1121
    :type input_conf: LayerOutput | List of LayerOutput
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1143
    input_loc_num = len(input_loc)
1144 1145 1146 1147 1148 1149

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1150
    input_conf_num = len(input_conf)
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1192 1193
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1194
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1195
    :type input_conf: LayerOutput | List of LayerOutput.
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1217
    input_loc_num = len(input_loc)
1218 1219 1220 1221 1222 1223

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1224 1225
    input_conf_num = len(input_conf)

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1254 1255 1256 1257 1258 1259
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1260
                   num_channels=None,
G
guosheng 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1278 1279
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1280 1281
    :return: LayerOutput
    """
G
guosheng 已提交
1282 1283 1284 1285
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1286 1287 1288 1289 1290 1291 1292
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
        spatial_scale=spatial_scale)
G
guosheng 已提交
1293 1294
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1295 1296


1297 1298
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1299 1300 1301 1302 1303
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1304

G
gaoyuan 已提交
1305 1306 1307 1308 1309 1310 1311 1312
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1313
    assert input.num_filters is not None
G
gaoyuan 已提交
1314 1315
    Layer(
        name=name,
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1329 1330
    return LayerOutput(
        name,
1331
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1332 1333 1334 1335 1336
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1337 1338 1339 1340
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1341 1342 1343 1344
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1345
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1346
                  stride=-1,
Z
zhangjinchao01 已提交
1347 1348 1349 1350
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1351 1352
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1353 1354 1355
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1356
    operation. Note that for sequence with sub-sequence, the default value
1357 1358
    of stride is -1.

Z
zhangjinchao01 已提交
1359 1360 1361 1362 1363 1364
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1365
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1366

L
Luo Tao 已提交
1367 1368
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1369 1370 1371 1372 1373 1374 1375 1376
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1377
    :param stride: The step size between successive pooling regions.
1378
    :type stride: Int
Z
zhangjinchao01 已提交
1379 1380 1381 1382
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1383
    :return: LayerOutput object.
Y
Yu Yang 已提交
1384
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1385 1386
    """
    extra_dict = dict()
1387
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1388 1389
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1390 1391 1392 1393
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1394 1395
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1396 1397 1398
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1399 1400 1401 1402 1403 1404
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1405
        stride=stride,
Q
qijun 已提交
1406
        **extra_dict)
Z
zhangjinchao01 已提交
1407

Q
qijun 已提交
1408 1409
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1410

Q
qijun 已提交
1411

Z
zhangjinchao01 已提交
1412 1413
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1414
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1415 1416
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1417
@layer_support()
Q
qijun 已提交
1418 1419
def lstmemory(input,
              name=None,
1420
              size=None,
Q
qijun 已提交
1421 1422 1423 1424 1425 1426
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1427 1428 1429 1430 1431 1432 1433 1434
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1435
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1436

L
luotao02 已提交
1437
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1438

L
luotao02 已提交
1439
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1440

L
luotao02 已提交
1441
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1442

L
luotao02 已提交
1443
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1444 1445


C
caoying03 已提交
1446
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1447
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1448 1449 1450 1451
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1452

C
caoying03 已提交
1453
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1454 1455
    to config a simple plain lstm layer.

C
caoying03 已提交
1456 1457 1458 1459
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1460 1461 1462 1463 1464

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1465 1466
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1485
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1486 1487 1488 1489 1490 1491
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1492
    assert input.size is not None and input.size % 4 == 0
1493

1494 1495 1496 1497 1498
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1499 1500 1501
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1502

Q
qijun 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1513

Q
qijun 已提交
1514 1515 1516 1517 1518
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1519

Z
zhangjinchao01 已提交
1520 1521 1522

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1523
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1524 1525
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1526
@layer_support()
Q
qijun 已提交
1527
def grumemory(input,
1528
              size=None,
Q
qijun 已提交
1529 1530 1531 1532 1533 1534
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1556 1557
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1558 1559 1560 1561 1562

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1563 1564 1565
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1566 1567 1568 1569 1570

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1571
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1572
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1573 1574 1575
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1576

C
caoying03 已提交
1577 1578 1579
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1591 1592
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1593
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1609
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1610 1611 1612 1613
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1614 1615 1616 1617 1618 1619
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1620 1621 1622
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1623

Q
qijun 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1633

Q
qijun 已提交
1634 1635 1636 1637 1638
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1639

Z
zhangjinchao01 已提交
1640 1641 1642

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1643 1644
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1645
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1646
             stride=-1,
Z
zhangjinchao01 已提交
1647 1648 1649 1650
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1651 1652 1653
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1654
    of stride is -1.
1655

L
Luo Tao 已提交
1656 1657 1658 1659 1660 1661
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1662 1663 1664 1665 1666
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1667
    :param stride: The step size between successive pooling regions.
1668
    :type stride: Int
Z
zhangjinchao01 已提交
1669 1670
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1671
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1672 1673
    :rtype: LayerOutput
    """
1674 1675 1676 1677 1678 1679
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1680
    if agg_level == AggregateLevel.TO_SEQUENCE:
1681 1682
        assert stride == -1

Z
zhangjinchao01 已提交
1683 1684 1685 1686 1687
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1688
        stride=stride,
Q
qijun 已提交
1689 1690 1691 1692 1693 1694
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1695 1696 1697 1698


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1699 1700
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1701
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1702
              stride=-1,
Z
zhangjinchao01 已提交
1703 1704 1705 1706
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1707 1708 1709
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1710
    of stride is -1.
1711

L
Luo Tao 已提交
1712 1713 1714 1715 1716 1717
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1718 1719 1720 1721 1722
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1723
    :param stride: The step size between successive pooling regions.
1724
    :type stride: Int
Z
zhangjinchao01 已提交
1725 1726
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1727
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1728 1729
    :rtype: LayerOutput
    """
1730 1731 1732 1733 1734 1735 1736

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1737
    if agg_level == AggregateLevel.TO_SEQUENCE:
1738 1739
        assert stride == -1

Z
zhangjinchao01 已提交
1740 1741 1742 1743 1744
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1745
        stride=stride,
Q
qijun 已提交
1746 1747 1748 1749 1750 1751
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1752 1753 1754


class ExpandLevel(object):
1755 1756 1757 1758 1759
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1760 1761
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1762 1763
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1764 1765
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1766 1767
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1768 1769
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1770 1771
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1772

1773

Z
zhangjinchao01 已提交
1774 1775
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1776 1777
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1778 1779
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1780
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1792
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1807
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1817 1818 1819 1820 1821 1822
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1823 1824


X
xuwei06 已提交
1825
@wrap_name_default()
X
xuwei06 已提交
1826
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1827
@layer_support()
X
xuwei06 已提交
1828 1829 1830
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1831
                 act=None,
X
xuwei06 已提交
1832 1833
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1834
    """
X
xuwei06 已提交
1835
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1836

X
xuwei06 已提交
1837
    If as_row_vector:
X
xuwei06 已提交
1838
    .. math::
X
xuwei06 已提交
1839 1840 1841 1842 1843
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1844 1845 1846 1847 1848

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1849
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1850 1851 1852 1853 1854 1855

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1856 1857 1858 1859 1860 1861
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1862 1863
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1874
        active_type=act.name,
X
xuwei06 已提交
1875
        num_filters=num_repeats,
X
xuwei06 已提交
1876
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1877
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1878 1879 1880 1881 1882
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1883
        activation=act,
Q
qijun 已提交
1884 1885
        parents=[input])

X
xuwei06 已提交
1886

1887 1888 1889
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1890
@layer_support(ERROR_CLIPPING, DROPOUT)
1891 1892 1893 1894 1895 1896 1897 1898
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1899
    the dimension of each instance is M, and the input reshape_size is N, then the
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1970
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1971 1972
    :rtype: LayerOutput
    """
1973
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1974
    assert len(input) == 2
1975 1976 1977 1978 1979 1980 1981
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1982 1983 1984 1985
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1986 1987 1988 1989 1990 1991
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1992 1993


L
liaogang 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2010
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2011

L
liaogang 已提交
2012
    :param   input:        A input layer.
L
liaogang 已提交
2013
    :type    input:        LayerOutput.
L
liaogang 已提交
2014
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
2015
    :type    out_size_x:   int|None
L
liaogang 已提交
2016
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
2017
    :type    out_size_y:   int|None
L
liaogang 已提交
2018
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
2019
    :type    name:         None|basestring
L
liaogang 已提交
2020
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2021 2022 2023 2024 2025 2026 2027
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2028
    assert input.num_filters is not None
L
liaogang 已提交
2029
    num_channels = input.num_filters
Q
qijun 已提交
2030 2031 2032 2033 2034 2035 2036
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2037
                channels=num_channels)),
Q
qijun 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2047

Z
zhangjinchao01 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2075
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2076 2077
    :rtype: LayerOutput
    """
2078 2079 2080
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2081 2082 2083
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2084
        inputs=[weight.name, input.name],
Q
qijun 已提交
2085 2086 2087
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2088 2089 2090 2091 2092 2093


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2094
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2095 2096

    .. math::
2097
       y  = w x
Z
zhangjinchao01 已提交
2098

2099 2100 2101 2102 2103
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2119
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2120 2121
    :rtype: LayerOutput
    """
2122 2123 2124
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2125 2126 2127 2128
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2129 2130 2131
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2132 2133 2134 2135 2136 2137


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2138
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2157
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2158 2159 2160 2161 2162 2163
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2164 2165 2166
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2167 2168


2169 2170
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2171
def rotate_layer(input, height, width, name=None, layer_attr=None):
2172
    """
H
Haonan 已提交
2173 2174
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2175 2176

    .. math::
H
Haonan 已提交
2177
       y(j,i,:) = x(M-i-1,j,:)
2178

H
Haonan 已提交
2179
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2180 2181 2182 2183 2184 2185

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2186 2187
                          height=100,
                          width=100)
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2201 2202 2203
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2204
        width=width,
H
Haonan 已提交
2205 2206 2207 2208 2209 2210 2211 2212
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2213 2214


Z
zhangjinchao01 已提交
2215 2216
@wrap_name_default()
@layer_support()
2217
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2218 2219 2220 2221
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2222
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2223 2224 2225 2226 2227
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2228

2229 2230
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2231

L
Luo Tao 已提交
2232 2233 2234 2235 2236 2237
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2250
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2251 2252
    :rtype: LayerOutput
    """
2253
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2254 2255 2256 2257 2258 2259
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2260
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2261
    else:
2262 2263
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2264 2265 2266 2267 2268 2269
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2270
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2271
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2272

2273

Z
zhangjinchao01 已提交
2274 2275
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2276
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2277
@layer_support()
Q
qijun 已提交
2278 2279
def hsigmoid(input,
             label,
2280
             num_classes=None,
Q
qijun 已提交
2281 2282 2283 2284
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2296
                        label=data_layer)
Z
zhangjinchao01 已提交
2297 2298 2299 2300 2301 2302 2303

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2304
    :type num_classes: int|None
L
luotao02 已提交
2305 2306
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2307 2308 2309
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2310 2311
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2312 2313
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2314
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2315 2316 2317 2318
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2319 2320 2321 2322 2323 2324 2325 2326 2327
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2328 2329 2330
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2331 2332 2333 2334 2335
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2336 2337
    ipts_for_layer = []
    parents = []
2338
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2339
        assert isinstance(each_input, LayerOutput)
2340
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2341 2342 2343 2344
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2345
    l = Layer(
Z
zhangjinchao01 已提交
2346 2347 2348 2349 2350
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2351 2352 2353
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2354

2355

Z
zhangjinchao01 已提交
2356 2357 2358 2359 2360
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2377 2378
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2379
    """
2380
    Convolution layer for image. Paddle can support both square and non-square
2381
    input currently.
Z
zhangjinchao01 已提交
2382 2383 2384 2385

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2386

2387
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2388
    and non-square input currently.
2389

X
xuwei06 已提交
2390
    The details of convolution transpose layer,
2391 2392 2393
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2394 2395 2396 2397
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2398 2399 2400
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2401
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2402 2403
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2404

L
Luo Tao 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2415 2416 2417 2418
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2419 2420 2421
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2422 2423 2424
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2425
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2426 2427 2428 2429 2430
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2431 2432 2433
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2434 2435
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2436 2437 2438
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2453 2454
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2455
    :param layer_type: specify the layer_type, default is None. If trans=True,
2456 2457
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2458
                       "cudnn_conv"
2459
    :type layer_type: String
D
dangqingqing 已提交
2460
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2461 2462 2463 2464 2465
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2466

Z
zhangjinchao01 已提交
2467
    if filter_size_y is None:
2468 2469 2470 2471 2472 2473
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2474
    if stride_y is None:
2475 2476 2477 2478 2479 2480
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2481
    if padding_y is None:
2482 2483 2484 2485 2486 2487 2488 2489
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2490
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2491 2492 2493 2494
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2495

2496 2497
    if layer_type:
        if trans:
2498
            assert layer_type in ["exconvt", "cudnn_convt"]
2499 2500 2501 2502 2503
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2504

X
xuwei06 已提交
2505
    l = Layer(
Z
zhangjinchao01 已提交
2506
        name=name,
Q
qijun 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2519 2520 2521 2522
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2523
        type=lt,
Q
qijun 已提交
2524 2525 2526 2527 2528 2529 2530 2531
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2532 2533 2534 2535


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2546 2547
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2548 2549 2550 2551 2552 2553 2554
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2583
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2584
    :type padding: int
2585 2586
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2587 2588 2589 2590
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2591
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2592
    :type pool_size: int
2593 2594
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2595 2596
    :param num_channels: number of input channel.
    :type num_channels: int
2597
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2598 2599
                      MaxPooling.
    :type pool_type: BasePoolingType
2600
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2601
    :type stride: int
2602 2603
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2604 2605
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2606 2607 2608 2609
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2610 2611
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2622
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2623
        if (
Y
Yu Yang 已提交
2624
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2625
        else pool_type.name
2626 2627 2628 2629 2630

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2631
    l = Layer(
Z
zhangjinchao01 已提交
2632 2633
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2646
                    padding_y=padding_y))
Q
qijun 已提交
2647
        ],
2648
        ceil_mode=ceil_mode,
Q
qijun 已提交
2649 2650 2651 2652 2653 2654 2655
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2656 2657


Q
qijun 已提交
2658 2659
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2660 2661 2662 2663 2664 2665
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2666 2667 2668 2669 2670
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2671 2672 2673 2674
    The example usage is:

    ..  code-block:: python

2675 2676 2677
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2678 2679
                        pool_type=MaxPooling())

Q
qijun 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2708
    l = Layer(
Q
qijun 已提交
2709 2710
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2711 2712 2713 2714 2715
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2716
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2728 2729 2730 2731
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2732
    l = Layer(
Q
qijun 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2752 2753 2754 2755


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2756 2757 2758 2759 2760 2761
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2762
                      layer_attr=None):
Z
zhangjinchao01 已提交
2763
    """
2764
    Response normalization across feature maps.
D
dangqingqing 已提交
2765 2766
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2767

L
Luo Tao 已提交
2768 2769 2770
    The example usage is:

    ..  code-block:: python
2771

L
Luo Tao 已提交
2772 2773
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2774
    :param name: layer name.
D
dangqingqing 已提交
2775
    :type name: None|basestring
Z
zhangjinchao01 已提交
2776 2777
    :param input: layer's input.
    :type input: LayerOutput
2778
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2779
    :type size: int
D
dangqingqing 已提交
2780
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2781
    :type scale: float
D
dangqingqing 已提交
2782
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2783 2784 2785 2786 2787
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2788
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2789 2790 2791
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2792
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2793 2794 2795


@wrap_bias_attr_default()
2796 2797
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2798 2799
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2800
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2801 2802 2803 2804 2805 2806 2807
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2829 2830 2831
    The example usage is:

    ..  code-block:: python
2832

L
Luo Tao 已提交
2833 2834
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2849
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2877
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2888
    l = Layer(
Z
zhangjinchao01 已提交
2889
        name=name,
Q
qijun 已提交
2890 2891
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2892 2893 2894 2895 2896 2897
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2898
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2899

Q
qijun 已提交
2900 2901 2902 2903 2904 2905 2906
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2934
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2935 2936 2937 2938 2939 2940
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2941 2942 2943
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2944 2945


G
guosheng 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2982 2983 2984
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2985
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2986
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3009 3010 3011
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3012 3013

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3014 3015
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3030
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3031 3032 3033 3034 3035 3036
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3037
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3038 3039 3040 3041 3042 3043 3044
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3045
    l = Layer(
Q
qijun 已提交
3046 3047 3048
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3049 3050
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3051
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3052

Q
qijun 已提交
3053 3054 3055 3056 3057 3058 3059
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3060 3061 3062 3063


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3064
@layer_support(DROPOUT, ERROR_CLIPPING)
3065
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3066 3067 3068 3069
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3070 3071 3072 3073 3074 3075
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3076 3077 3078
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3079
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3080 3081 3082 3083
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3084
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3085 3086 3087 3088 3089 3090 3091 3092
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3093
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3094 3095

    def __is_type__(o, tp):
3096
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3118 3119
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3120

Q
qijun 已提交
3121 3122
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3123

3124 3125
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3126

3127
    layer = Layer(
Q
qijun 已提交
3128 3129
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3130 3131
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3132
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3133
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3134

3135
    sz = layer.config.size
Z
zhangjinchao01 已提交
3136

Q
qijun 已提交
3137 3138 3139 3140 3141 3142 3143 3144
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3145 3146
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3147
@wrap_bias_attr_default(has_bias=False)
3148
@layer_support(DROPOUT, ERROR_CLIPPING)
3149 3150 3151 3152
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3153

3154
    Inputs:
X
xuwei06 已提交
3155
      - a = [a1, a2, ..., am]
3156
      - b = [b1, b2, ..., bn]
3157

X
xuwei06 已提交
3158 3159 3160 3161
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3179 3180 3181 3182
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3204
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3205 3206
def memory(name,
           size,
3207
           memory_name=None,
Q
qijun 已提交
3208 3209 3210 3211
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3232 3233 3234 3235 3236 3237 3238 3239 3240
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3241

3242 3243 3244 3245 3246 3247 3248
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3249 3250 3251
    :type name: basestring
    :param size: size of memory.
    :type size: int
3252 3253 3254
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3255
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3265
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3276 3277
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3278

3279 3280 3281 3282 3283 3284 3285 3286
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3287 3288

    lout = LayerOutput(
3289
        name=memory_name,
Q
qijun 已提交
3290 3291 3292
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3293 3294 3295 3296
    return lout


@wrap_bias_attr_default()
3297 3298
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3299 3300 3301
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3302 3303
def lstm_step_layer(input,
                    state,
3304
                    size=None,
Q
qijun 已提交
3305 3306 3307 3308 3309 3310
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3311
    """
3312 3313
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3314 3315 3316

    ..  math::

3317
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3318

3319
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3320

3321
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3322

3323
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3324

L
luotao02 已提交
3325
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3326 3327


L
luotao02 已提交
3328
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3329
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3330
    input vectors.
Z
zhangjinchao01 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3341 3342
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3343 3344 3345 3346
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3347 3348
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3367
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3368 3369
    :rtype: LayerOutput
    """
3370 3371 3372

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3373 3374 3375 3376 3377 3378 3379
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3380
        size=state.size,
Q
qijun 已提交
3381 3382
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3383

Q
qijun 已提交
3384 3385 3386 3387 3388 3389 3390
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3391 3392 3393


@wrap_bias_attr_default()
W
wangyang59 已提交
3394
@wrap_param_attr_default()
Q
qijun 已提交
3395
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3396 3397 3398
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3399 3400 3401 3402 3403 3404 3405
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3406
                   param_attr=None,
Q
qijun 已提交
3407
                   layer_attr=None):
Z
zhangjinchao01 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3418 3419
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3420
    :param layer_attr:
D
dangqingqing 已提交
3421
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3422 3423 3424 3425 3426 3427 3428 3429
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3430 3431 3432 3433
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3434
        # backward model compatibility.
3435
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3436 3437 3438 3439
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3440
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3441
    return LayerOutput(
Q
qijun 已提交
3442 3443
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3444
        parents=[input, output_mem],
Q
qijun 已提交
3445 3446
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3447 3448


Y
Yu Yang 已提交
3449 3450 3451 3452
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3453
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3521 3522 3523 3524
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3525 3526 3527 3528
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3538
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3539 3540 3541 3542 3543 3544 3545
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3546 3547 3548 3549 3550 3551 3552
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3553

Q
qijun 已提交
3554 3555 3556 3557 3558
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3559 3560 3561 3562 3563 3564 3565


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3566 3567 3568 3569 3570 3571 3572
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3573
    """
3574 3575
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3604
    :return: LayerOutput object.
3605
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3606
    """
Q
qijun 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3622 3623 3624 3625 3626 3627


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3628 3629
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3630
    """
3631

Z
zhangjinchao01 已提交
3632 3633 3634
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3635
        assert input.size is not None
Z
zhangjinchao01 已提交
3636
        if size is not None:
3637
            assert input.size == size
Z
zhangjinchao01 已提交
3638 3639


3640
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3641
    """
3642
    DEPRECATED.
Z
zhangjinchao01 已提交
3643 3644 3645 3646 3647 3648 3649 3650
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3651
    return input
Z
zhangjinchao01 已提交
3652 3653 3654


@wrap_name_default("recurrent_group")
3655
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3656
    """
C
caoying03 已提交
3657 3658 3659 3660 3661
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3706 3707
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3708
    :type reverse: bool
3709

3710 3711
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3712 3713 3714 3715 3716 3717 3718 3719 3720

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3721
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3722 3723 3724 3725
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3726
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3727
        input = [input]
3728
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3729 3730

    def is_in_links(x):
3731
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3732 3733 3734 3735

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3736
        name=name,
3737 3738
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3739 3740
    in_args = []
    for each_input in input:
3741
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3742
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3743
            mem = memory(
3744
                name=None,
Q
qijun 已提交
3745 3746
                size=each_input.input.size,
                boot_layer=each_input.input)
3747
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3748
            in_args.append(mem)
3749 3750
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3751

Z
zhangjinchao01 已提交
3752 3753 3754 3755 3756
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3757 3758 3759 3760 3761 3762
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3763 3764 3765

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3766
    for layer_out in layer_outs:
3767 3768
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3769 3770
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3771 3772 3773 3774 3775
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3776

Z
zhangjinchao01 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3805 3806

    def before_real_step(self):
Q
qijun 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3816 3817 3818
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3819
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3843
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3844 3845 3846 3847
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3858

3859

H
Haonan 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3896

Z
zhangjinchao01 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3913 3914
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3915 3916 3917 3918 3919 3920
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3921
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3922 3923
    :rtype: LayerOutput
    """
Q
qijun 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3935 3936 3937


@wrap_name_default()
Q
qijun 已提交
3938 3939 3940 3941 3942 3943 3944
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3945
                num_results_per_sample=None):
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3957
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3958 3959 3960 3961
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3962 3963 3964 3965 3966
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3967 3968
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3969 3970
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3971 3972
                               bos_id=0,
                               eos_id=1,
3973
                               beam_size=5)
3974 3975 3976 3977 3978 3979 3980 3981 3982

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3983
                 step, and it is applied to sequences with arbitrary length by
3984 3985 3986 3987 3988
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3989 3990
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3991
                  In beam_search, none of the input's type should be LayerOutput.
3992
    :type input: list
3993 3994 3995
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3996
                   symbol is essential, since it is used to initialize the RNN
3997 3998 3999 4000 4001 4002 4003 4004
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4005 4006
    :param max_length: Max generated sequence length.
    :type max_length: int
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4017 4018
    :return: The generated word index.
    :rtype: LayerOutput
4019 4020
    """

Z
zhangjinchao01 已提交
4021 4022 4023 4024 4025
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4026
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4027 4028 4029 4030 4031 4032
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4033 4034 4035
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4036
        if isinstance(each_input, BaseGeneratedInput):
4037 4038
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4039
            generated_input_index = i
4040

Z
zhangjinchao01 已提交
4041 4042 4043
        else:
            real_input.append(each_input)

4044
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4045 4046 4047 4048 4049 4050 4051 4052

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4053 4054 4055 4056 4057 4058
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4059 4060 4061 4062 4063 4064

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4065
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4066 4067
        return predict

4068 4069
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4070

Q
qijun 已提交
4071

4072 4073
def __cost_input__(input, label, weight=None):
    """
4074
    inputs and parents for cost layers.
4075 4076 4077 4078
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
4079
        assert weight.size == 1
4080 4081 4082
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4083

Z
zhangjinchao01 已提交
4084 4085

@wrap_name_default()
L
luotao1 已提交
4086
@layer_support()
4087
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4088
    """
L
Luo Tao 已提交
4089 4090 4091 4092
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4093
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4094 4095

    :param name: layer name.
4096
    :type name: basestring
Z
zhangjinchao01 已提交
4097
    :param input: Network prediction.
4098
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4099
    :param label: Data label.
4100 4101 4102 4103
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4104 4105
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4106 4107
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4108
    :return: LayerOutput object.
4109
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4110
    """
4111 4112
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4113 4114 4115 4116
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4117
        coeff=coeff,
Q
qijun 已提交
4118
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4119
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4120 4121


L
Luo Tao 已提交
4122 4123 4124
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4125
@wrap_name_default("cost")
4126
@layer_support()
Q
qijun 已提交
4127 4128 4129 4130
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4131
                        evaluator=classification_error_evaluator,
4132 4133
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4134 4135 4136 4137 4138 4139 4140 4141 4142
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4143 4144 4145
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4146
    :param evaluator: Evaluator method.
4147 4148
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4149 4150
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4151
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4152 4153 4154 4155 4156
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4157 4158 4159

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4160 4161 4162 4163
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4164
        coeff=coeff,
Q
qijun 已提交
4165
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4176
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4177

4178
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4179 4180 4181 4182 4183
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4184
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4185

4186

Q
qijun 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4196 4197
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4208 4209
       op = conv_operator(img=input1,
                          filter=input2,
4210
                          filter_size=3,
Z
zhangjinchao01 已提交
4211 4212 4213
                          num_filters=64,
                          num_channels=64)

4214 4215 4216 4217
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4218 4219
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4220 4221 4222
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4223
    :type filter_size_y: int
4224 4225
    :param num_filters: channel of output data.
    :type num_filters: int
4226 4227
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4228
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4229
    :type stride: int
Z
zhangjinchao01 已提交
4230
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4231
    :type stride_y: int
Z
zhangjinchao01 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4245

4246 4247
    if num_channels is None:
        num_channels = img.num_filters
4248 4249 4250

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4251
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4252

4253 4254 4255
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4267

4268
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4269 4270
    return op

Q
qijun 已提交
4271

4272
@wrap_param_attr_default()
Q
qijun 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4283 4284
                    param_attr=None,
                    trans=False):
4285 4286 4287 4288 4289 4290 4291 4292 4293
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4294
       proj = conv_projection(input=input1,
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4309 4310
    :param num_channels: channel of input data.
    :type num_channels: int
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4323 4324
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4355
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4356 4357 4358 4359 4360
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4361 4362 4363
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4376 4377 4378 4379

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4380

D
dangqingqing 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4398

D
dangqingqing 已提交
4399
    For example,
4400

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4422 4423

    The simply usage is:
D
dangqingqing 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4485
@wrap_name_default()
L
luotao1 已提交
4486 4487
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4499 4500 4501 4502
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4503 4504 4505 4506 4507

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4508
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4509 4510 4511

    :param name: layer name
    :type name: basestring
4512 4513
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4514
    :param b: input layer b.
4515
    :type b: LayerOutput
L
luotao1 已提交
4516 4517
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4518
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4519 4520
    :rtype: LayerOutput
    """
4521 4522
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4523 4524 4525
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4526
        inputs=[a.name, b.name],
Q
qijun 已提交
4527
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4528

Q
qijun 已提交
4529 4530
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4531 4532 4533 4534 4535


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4536
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4537
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4538 4539 4540 4541 4542 4543 4544 4545
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4546 4547 4548 4549 4550
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4551
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4552 4553

    In this formular:
4554 4555
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4556 4557
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4558
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4559 4560 4561 4562 4563

    The simple usage is:

    .. code-block:: python

4564
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4565 4566 4567

    :param name: layer name
    :type name: basestring
4568 4569 4570 4571
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4572
    :param size: the layer dimension.
L
luotao02 已提交
4573
    :type size: int.
Z
zhangjinchao01 已提交
4574 4575 4576
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4577
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4578 4579 4580 4581 4582 4583
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4584
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4585 4586
    :rtype: LayerOutput
    """
4587
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4588 4589 4590 4591 4592 4593
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4594 4595 4596 4597
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4598 4599 4600 4601 4602 4603


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4604
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4605 4606
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4607
                       select=None,
Q
qijun 已提交
4608 4609
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4610 4611 4612
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4613 4614 4615
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4626
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4627 4628 4629 4630 4631

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4632 4633
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4634
                   If is None, acts exactly like fc_layer.
4635
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4648
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4649 4650 4651 4652
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4653
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4654 4655
        param_attr = [param_attr]
    else:
4656
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4657 4658 4659 4660
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4661 4662 4663 4664
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4665
    Layer(
Q
qijun 已提交
4666 4667 4668
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4669 4670 4671
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4672
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4673 4674 4675 4676
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4677 4678 4679 4680 4681 4682 4683
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4684 4685 4686


@wrap_name_default()
L
luotao1 已提交
4687 4688
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4703 4704
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4705
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4706 4707
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4708
    l = Layer(
Z
zhangjinchao01 已提交
4709 4710 4711
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4712 4713 4714
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4715 4716 4717


@wrap_name_default()
L
luotao1 已提交
4718
@layer_support()
Q
qijun 已提交
4719 4720 4721 4722
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4723
                          layer_attr=None):
Z
zhangjinchao01 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4745 4746
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4747
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4748 4749 4750 4751 4752 4753 4754 4755
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4756 4757 4758
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4759 4760 4761


@wrap_name_default()
L
luotao1 已提交
4762
@layer_support()
Q
qijun 已提交
4763
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4764
    """
4765 4766 4767 4768
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4769 4770 4771

    .. math::

4772
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4773

4774 4775 4776 4777 4778
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4779

4780
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4781 4782

    In this formular:
4783 4784 4785 4786 4787 4788
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4789 4790 4791 4792 4793

    The simple usage is:

    .. code-block:: python

4794
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4795 4796
                                       size=elem_dim)

4797 4798 4799 4800
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4801 4802 4803 4804
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4805 4806
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4807
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4808 4809
    :rtype: LayerOutput
    """
4810 4811 4812 4813
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4814
            size = vectors.size / weights.size
4815 4816
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4817 4818
    Layer(
        name=name,
4819
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4820
        size=size,
4821
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4822 4823 4824
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4825

4826

4827
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4828

4829

Z
zhangjinchao01 已提交
4830
@wrap_name_default()
L
luotao1 已提交
4831
@layer_support()
Z
zhangjinchao01 已提交
4832 4833 4834 4835 4836 4837 4838
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4839
                       num_channels=None,
L
luotao1 已提交
4840 4841
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4842 4843
    """
    Expand feature map to minibatch matrix.
4844
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4845
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4856
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4857 4858
    convolution neural network, and before recurrent neural network.

4859 4860 4861 4862
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4863
       block_expand = block_expand_layer(input=layer,
4864
                                         num_channels=128,
4865 4866 4867 4868 4869
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4870 4871
    :param input: The input layer.
    :type input: LayerOutput
4872 4873
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4888 4889
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4890
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4891 4892
    :rtype: LayerOutput
    """
4893 4894 4895
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4913 4914


4915 4916
@wrap_name_default()
@layer_support()
4917
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4918 4919 4920 4921 4922
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4923
    So groups should be larger than 1, and the num of channels should be able
4924 4925
    to devided by groups.

X
xuwei06 已提交
4926 4927 4928 4929 4930 4931 4932 4933
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4934
    Please refer to Paper:
4935 4936 4937 4938
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4939

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4978 4979


Z
zhangjinchao01 已提交
4980
@wrap_name_default()
L
luotao1 已提交
4981
@layer_support()
Q
qijun 已提交
4982 4983 4984 4985 4986
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4987
              layer_attr=None):
Z
zhangjinchao01 已提交
4988 4989 4990 4991 4992
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4993 4994
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4995 4996
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4997 4998 4999 5000 5001 5002 5003 5004

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5005
    The example usage is:
Z
zhangjinchao01 已提交
5006 5007 5008 5009 5010 5011 5012 5013

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5014
    :param input: The input layer.
Z
zhangjinchao01 已提交
5015 5016 5017
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5018
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5019
    :type size: int
5020 5021
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
5022 5023
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5024 5025
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5026
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5027 5028 5029 5030
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5031 5032 5033 5034 5035
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5036
    Layer(
5037 5038 5039 5040
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5041
        inputs=[input.name, label.name],
Q
qijun 已提交
5042
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5043 5044
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5045

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5057
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5058
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
5076 5077 5078 5079

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5080
    icml2006_GravesFGS06.pdf>`_.
5081 5082 5083

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5084 5085 5086
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5087 5088
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5089
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5090
          'linear' activation is expected instead in the 'input' layer.
5091

C
caoying03 已提交
5092
    The example usage is:
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5138
@wrap_name_default()
5139
@wrap_param_attr_default()
L
luotao1 已提交
5140
@layer_support()
Q
qijun 已提交
5141 5142 5143 5144 5145 5146
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5147
              coeff=1.0,
L
luotao1 已提交
5148
              layer_attr=None):
Z
zhangjinchao01 已提交
5149 5150 5151 5152
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5153
    The example usage is:
Z
zhangjinchao01 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5164
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5174 5175
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5176 5177
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5178
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5179 5180 5181 5182 5183
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5184 5185 5186 5187 5188 5189
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5190

Q
qijun 已提交
5191
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5192 5193 5194 5195
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5196 5197 5198 5199
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5200
        coeff=coeff,
Q
qijun 已提交
5201
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5202 5203 5204
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5205 5206 5207 5208
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5209

5210

Z
zhangjinchao01 已提交
5211
@wrap_name_default()
5212
@wrap_param_attr_default()
L
luotao1 已提交
5213
@layer_support()
Q
qijun 已提交
5214 5215 5216 5217 5218
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5219
                       layer_attr=None):
Z
zhangjinchao01 已提交
5220 5221 5222 5223 5224 5225 5226
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5227
    The example usage is:
L
Luo Tao 已提交
5228 5229 5230 5231 5232 5233

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5244 5245
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5246
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5247 5248 5249 5250 5251 5252
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5253
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5254 5255 5256 5257
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5258 5259 5260 5261
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5262
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5263 5264 5265
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5266 5267 5268 5269
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5270

Q
qijun 已提交
5271

Y
Yu Yang 已提交
5272
@wrap_act_default(act=SigmoidActivation())
5273
@wrap_bias_attr_default(has_bias=True)
5274
@wrap_param_attr_default()
5275 5276
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5277 5278
def nce_layer(input,
              label,
C
caoying03 已提交
5279
              num_classes=None,
Y
Yu Yang 已提交
5280
              act=None,
5281
              param_attr=None,
Q
qijun 已提交
5282 5283 5284 5285 5286 5287
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5288 5289 5290 5291 5292 5293 5294 5295 5296
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5297 5298
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5310
    :type num_classes: int
Y
Yu Yang 已提交
5311 5312
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5313 5314
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5315
    :param num_neg_samples: number of negative samples. Default is 10.
5316
    :type num_neg_samples: int
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5330 5331 5332 5333 5334 5335 5336 5337
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5338
    assert isinstance(input, collections.Sequence)
5339

5340 5341
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5342 5343
    if num_classes is None:
        num_classes = label.size
5344 5345 5346
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5347
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5348 5349
    if not isinstance(act, BaseActivation):
        raise TypeError()
5350

5351 5352
    ipts_for_layer = []
    parents = []
5353
    for each_input, attr in zip(input, param_attr):
5354
        assert isinstance(each_input, LayerOutput)
5355
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5366
    l = Layer(
5367 5368 5369 5370
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5371
        active_type=act.name,
5372 5373 5374
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5375 5376
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5377 5378 5379 5380 5381
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5382

5383

Z
zhangjinchao01 已提交
5384 5385 5386
"""
following are cost Layers.
"""
5387 5388


Z
zhangjinchao01 已提交
5389
@wrap_name_default()
L
luotao1 已提交
5390
@layer_support()
Q
qijun 已提交
5391 5392 5393 5394 5395 5396 5397
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5398
    """
5399
    A cost Layer for learning to rank using gradient descent. Details can refer
5400 5401
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5402 5403 5404 5405 5406
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5407
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5408

L
luotao02 已提交
5409
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5410

L
luotao02 已提交
5411
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5412 5413 5414 5415 5416 5417 5418 5419

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5420
    The example usage is:
Z
zhangjinchao01 已提交
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5441 5442
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5443
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5456 5457 5458 5459 5460 5461
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5462

X
xuwei06 已提交
5463
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5464

5465

Z
zhangjinchao01 已提交
5466
@wrap_name_default()
L
luotao1 已提交
5467
@layer_support()
Q
qijun 已提交
5468 5469 5470 5471 5472 5473
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5474 5475 5476
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5477
    The example usage is:
Z
zhangjinchao01 已提交
5478 5479 5480 5481 5482 5483 5484 5485

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5486
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5498 5499 5500
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5501 5502 5503
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5504 5505
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5506
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5507 5508
    :rtype: LayerOutput
    """
5509 5510 5511
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5512 5513 5514 5515 5516 5517 5518
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5519

Q
qijun 已提交
5520 5521
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5522

5523

Z
zhangjinchao01 已提交
5524
@wrap_name_default()
L
luotao1 已提交
5525
@layer_support()
5526 5527 5528 5529 5530 5531
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5532 5533 5534
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5535 5536
    The example usage is:

Z
zhangjinchao01 已提交
5537 5538
    .. code-block:: python

X
xuwei06 已提交
5539
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5540
                            label=label_layer)
Z
zhangjinchao01 已提交
5541 5542 5543 5544 5545 5546 5547

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5548 5549
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5550
    :type coeff: float.
5551 5552 5553 5554
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5555 5556
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5557
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5558 5559 5560
    :rtype: LayerOutput.
    """

5561
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5562 5563 5564
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5565
        inputs=ipts,
Q
qijun 已提交
5566 5567
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5568
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5569

5570

Z
zhangjinchao01 已提交
5571
@wrap_name_default()
L
luotao1 已提交
5572
@layer_support()
Q
qijun 已提交
5573 5574 5575 5576
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5577 5578
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5579 5580
    """
    A loss layer for multi class entropy with selfnorm.
5581
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5582

C
caoying03 已提交
5583 5584
    The example usage is:

Z
zhangjinchao01 已提交
5585 5586
    .. code-block:: python

X
xuwei06 已提交
5587
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5588
                                          label=label_layer)
Z
zhangjinchao01 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5600 5601
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5602
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5603 5604
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5605 5606 5607 5608 5609 5610 5611
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5612

Q
qijun 已提交
5613 5614 5615 5616 5617
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5618

5619

X
xuwei06 已提交
5620 5621 5622 5623 5624 5625
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5626 5627
    The example usage is:

X
xuwei06 已提交
5628 5629
    .. code-block:: python

L
Luo Tao 已提交
5630
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5641
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5642 5643 5644 5645 5646
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5647

Q
qijun 已提交
5648
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5649 5650


Z
zhangjinchao01 已提交
5651
@wrap_name_default()
L
luotao1 已提交
5652 5653
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5654 5655 5656
    """
    A loss layer for huber loss.

C
caoying03 已提交
5657 5658
    The example usage is:

Z
zhangjinchao01 已提交
5659 5660
    .. code-block:: python

X
xuwei06 已提交
5661
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5662
                         label=label_layer)
Z
zhangjinchao01 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5672 5673
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5674
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5675 5676
    :rtype: LayerOutput.
    """
5677 5678 5679
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5680 5681 5682 5683 5684 5685
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5686
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5687

5688

Z
zhangjinchao01 已提交
5689
@wrap_name_default()
L
luotao1 已提交
5690
@layer_support()
Q
qijun 已提交
5691 5692 5693 5694
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5695
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5696 5697 5698
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5699 5700
    The example usage is:

Z
zhangjinchao01 已提交
5701 5702
    .. code-block:: python

X
xuwei06 已提交
5703
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5704
                                               label=label_layer)
Z
zhangjinchao01 已提交
5705 5706 5707 5708 5709 5710 5711 5712 5713

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5714 5715
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5716
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5717 5718 5719
    :rtype: LayerOutput
    """

5720 5721
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5738 5739 5740 5741


@wrap_name_default()
@layer_support()
5742
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5743 5744
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5745
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5746 5747 5748 5749 5750 5751 5752 5753 5754

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5755
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5756

D
dangqingqing 已提交
5757 5758 5759
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5760 5761
    The example usage is:

D
dangqingqing 已提交
5762 5763
    .. code-block:: python

5764 5765
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5766 5767 5768 5769 5770 5771 5772

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5773 5774
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5788
        coeff=coeff,
D
dangqingqing 已提交
5789 5790 5791
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5811 5812
    The example usage is:

W
wwhu 已提交
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5845 5846


5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5863 5864


D
dangqingqing 已提交
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5887

D
dangqingqing 已提交
5888 5889 5890 5891 5892
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5893

D
dangqingqing 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5937 5938


5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5958 5959 5960 5961 5962 5963
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5964 5965 5966 5967 5968
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5969 5970 5971 5972 5973 5974

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5975 5976 5977 5978 5979 5980 5981 5982
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5983
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5984
    assert isinstance(param_attr, ParameterAttribute)
5985 5986 5987

    l = Layer(
        name=name,
C
caoying03 已提交
5988
        type=LayerType.PRELU,
C
caoying03 已提交
5989
        inputs=Input(input.name, **param_attr.attr),
5990 5991 5992 5993 5994 5995 5996
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5997 5998


5999
@wrap_name_default()
C
caoying03 已提交
6000
@layer_support(ERROR_CLIPPING, DROPOUT)
6001 6002 6003 6004 6005 6006 6007
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6008 6009
                     gate_bias_attr=True,
                     inproj_attr=None,
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6046 6047 6048 6049 6050 6051
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6074
        layer_attr=inproj_attr,
6075 6076 6077 6078 6079 6080 6081 6082 6083
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6084
        param_attr=gate_param_attr,
6085 6086 6087 6088 6089
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6090 6091


6092 6093
@wrap_name_default()
@layer_support()
6094
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6095
    """
6096
    The crop layer crops images by offset and shape. User can set crop shape by
6097
    args 'shape' explicitly or by reference input layer.
6098

6099 6100 6101
    The example usage is:

    .. code-block:: python
W
whs 已提交
6102
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6103 6104 6105 6106

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6107 6108
    :param offset: The crop offset
    :type offset: Sequence
6109 6110 6111 6112 6113 6114 6115
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6116
    :type shape: Sequence | None
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6139 6140


C
caoying03 已提交
6141 6142
@wrap_name_default()
@layer_support()
6143
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6144
    """
6145
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6146
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6147

C
caoying03 已提交
6148 6149 6150
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6151 6152 6153 6154

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6155 6156

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6157

C
caoying03 已提交
6158

6159 6160 6161
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6162 6163 6164 6165 6166 6167
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6168

6169 6170 6171 6172 6173 6174 6175
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6176
    l = Layer(
6177 6178
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6179 6180 6181 6182 6183 6184 6185
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6186 6187


G
guosheng 已提交
6188
@wrap_name_default("clip")
6189
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6190 6191 6192 6193 6194 6195 6196 6197 6198
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6199
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6200 6201 6202 6203 6204

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6205 6206 6207 6208
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6209 6210
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6211 6212 6213 6214 6215
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6216 6217
        min=min,
        max=max)
G
guosheng 已提交
6218 6219
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6220 6221 6222 6223 6224


@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6225
    """
C
caoying03 已提交
6226
    This layer accepts one input which are scores over a sequence or a nested
6227 6228 6229 6230 6231 6232 6233 6234 6235
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6236
    :param input: The input layer. It stores scores over a sequence or a nested
6237 6238 6239 6240 6241 6242 6243
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6244
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6245
                                            "accepts only one input.")
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)