keypoint_infer.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import glob
from functools import reduce

from PIL import Image
import cv2
import numpy as np
import paddle
from preprocess import preprocess, NormalizeImage, Permute
from keypoint_preprocess import EvalAffine, TopDownEvalAffine
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
from keypoint_visualize import draw_pose
from paddle.inference import Config
from paddle.inference import create_predictor
31 32
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
33 34 35 36 37 38 39 40 41 42 43 44 45 46
from infer import get_test_images, print_arguments

# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}


class KeyPoint_Detector(object):
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
47
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
48 49 50 51 52 53 54 55 56 57 58
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        threshold (float): threshold to reserve the result for output.
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
59
                 device='CPU',
60 61 62 63 64 65
                 run_mode='fluid',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
Z
zhiboniu 已提交
66 67
                 enable_mkldnn=False,
                 use_dark=True):
68
        self.pred_config = pred_config
69
        self.predictor, self.config = load_predictor(
70 71 72
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
73
            device=device,
74
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
75 76 77 78 79 80 81 82
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
Z
zhiboniu 已提交
83
        self.use_dark = use_dark
84 85 86 87 88 89 90

    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
91
        im, im_info = preprocess(im, preprocess_ops)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        inputs = create_inputs(im, im_info)
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        if KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_bottomup':
            results = {}
            h, w = inputs['im_shape'][0]
            preds = [np_boxes]
            if np_masks is not None:
                preds += np_masks
            preds += [h, w]
            keypoint_postprocess = HrHRNetPostProcess()
            results['keypoint'] = keypoint_postprocess(*preds)
            return results
        elif KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_topdown':
            results = {}
            imshape = inputs['im_shape'][:, ::-1]
            center = np.round(imshape / 2.)
            scale = imshape / 200.
Z
zhiboniu 已提交
114
            keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
            results['keypoint'] = keypoint_postprocess(np_boxes, center, scale)
            return results
        else:
            raise ValueError("Unsupported arch: {}, expect {}".format(
                self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
132
        self.det_times.preprocess_time_s.start()
133 134 135 136 137 138 139
        inputs = self.preprocess(image)
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()

        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
140
        self.det_times.preprocess_time_s.end()
141 142 143 144 145 146 147 148 149 150 151 152 153 154
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]

155
        self.det_times.inference_time_s.start()
156 157 158 159 160 161 162 163 164 165 166 167 168
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]
169
        self.det_times.inference_time_s.end(repeats=repeats)
170

171
        self.det_times.postprocess_time_s.start()
172 173
        results = self.postprocess(
            np_boxes, np_masks, inputs, threshold=threshold)
174
        self.det_times.postprocess_time_s.end()
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        self.det_times.img_num += 1
        return results


def create_inputs(im, im_info):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = np.array((im, )).astype('float32')
    inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')

    return inputs


class PredictConfig_KeyPoint():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.tagmap = False
213
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        if 'keypoint_bottomup' == self.archcls:
            self.tagmap = True
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in KEYPOINT_SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], KEYPOINT_SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
241
                   device='CPU',
242 243 244 245 246 247 248 249 250 251 252
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
                   trt_opt_shape=640,
                   trt_calib_mode=False,
                   cpu_threads=1,
                   enable_mkldnn=False):
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
253
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
254 255 256 257 258 259 260 261 262 263
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
264
        ValueError: predict by TensorRT need device == 'GPU'.
265
    """
G
Guanghua Yu 已提交
266
    if device != 'GPU' and run_mode != 'fluid':
267
        raise ValueError(
G
Guanghua Yu 已提交
268 269
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
270 271 272
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
273
    if device == 'GPU':
274 275 276 277
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
278 279
    elif device == 'XPU':
        config.enable_xpu(10 * 1024 * 1024)
280 281 282 283 284 285 286 287 288 289 290 291 292 293
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass

G
Guanghua Yu 已提交
294 295 296 297 298
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
            workspace_size=1 << 10,
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
            use_calib_mode=trt_calib_mode)

        if use_dynamic_shape:
            min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
            max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
            opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
323
    return predictor, config
324 325 326 327 328 329 330 331 332 333 334 335 336


def predict_image(detector, image_list):
    for i, img_file in enumerate(image_list):
        if FLAGS.run_benchmark:
            detector.predict(img_file, FLAGS.threshold, warmup=10, repeats=10)
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            results = detector.predict(img_file, FLAGS.threshold)
Z
zhiboniu 已提交
337 338 339 340 341 342 343
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            draw_pose(
                img_file,
                results,
                visual_thread=FLAGS.threshold,
                save_dir=FLAGS.output_dir)
344 345 346 347 348 349 350 351


def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
352 353
        video_name = os.path.splitext(os.path.basename(FLAGS.video_file))[
            0] + '.mp4'
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name + '.mp4')
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break

        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = draw_pose(
            frame, results, visual_thread=FLAGS.threshold, returnimg=True)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig_KeyPoint(FLAGS.model_dir)
    detector = KeyPoint_Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
388
        device=FLAGS.device,
389 390 391 392 393 394
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
Z
zhiboniu 已提交
395 396
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)
397 398 399 400 401 402 403 404 405 406 407 408

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
409 410
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
411 412
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('KeyPoint')
428 429 430 431 432 433 434


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
435 436 437 438
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
439 440

    main()