jde_matching.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
15
This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py
16 17
"""

G
George Ni 已提交
18
import lap
19 20 21 22
import scipy
import numpy as np
from scipy.spatial.distance import cdist
from ..motion import kalman_filter
23 24
import warnings
warnings.filterwarnings("ignore")
G
George Ni 已提交
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
__all__ = [
    'merge_matches',
    'linear_assignment',
    'cython_bbox_ious',
    'iou_distance',
    'embedding_distance',
    'fuse_motion',
]


def merge_matches(m1, m2, shape):
    O, P, Q = shape
    m1 = np.asarray(m1)
    m2 = np.asarray(m2)

    M1 = scipy.sparse.coo_matrix(
        (np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P))
    M2 = scipy.sparse.coo_matrix(
        (np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q))

    mask = M1 * M2
    match = mask.nonzero()
    match = list(zip(match[0], match[1]))
    unmatched_O = tuple(set(range(O)) - set([i for i, j in match]))
    unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match]))

    return match, unmatched_O, unmatched_Q


def linear_assignment(cost_matrix, thresh):
    if cost_matrix.size == 0:
        return np.empty(
            (0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(
                range(cost_matrix.shape[1]))
    matches, unmatched_a, unmatched_b = [], [], []
    cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
    for ix, mx in enumerate(x):
        if mx >= 0:
            matches.append([ix, mx])
    unmatched_a = np.where(x < 0)[0]
    unmatched_b = np.where(y < 0)[0]
    matches = np.asarray(matches)
    return matches, unmatched_a, unmatched_b


def cython_bbox_ious(atlbrs, btlbrs):
    ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
    if ious.size == 0:
        return ious
G
George Ni 已提交
75 76 77
    try:
        import cython_bbox
    except Exception as e:
78
        print('cython_bbox not found, please install cython_bbox.'
G
George Ni 已提交
79 80 81
                     'for example: `pip install cython_bbox`.')
        raise e

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    ious = cython_bbox.bbox_overlaps(
        np.ascontiguousarray(
            atlbrs, dtype=np.float),
        np.ascontiguousarray(
            btlbrs, dtype=np.float))
    return ious


def iou_distance(atracks, btracks):
    """
    Compute cost based on IoU between two list[STrack].
    """
    if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) or (
            len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
        atlbrs = atracks
        btlbrs = btracks
    else:
        atlbrs = [track.tlbr for track in atracks]
        btlbrs = [track.tlbr for track in btracks]
    _ious = cython_bbox_ious(atlbrs, btlbrs)
    cost_matrix = 1 - _ious

    return cost_matrix


def embedding_distance(tracks, detections, metric='euclidean'):
    """
    Compute cost based on features between two list[STrack].
    """
    cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
    if cost_matrix.size == 0:
        return cost_matrix
    det_features = np.asarray(
        [track.curr_feat for track in detections], dtype=np.float)
    track_features = np.asarray(
        [track.smooth_feat for track in tracks], dtype=np.float)
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features,
                                        metric))  # Nomalized features
    return cost_matrix


def fuse_motion(kf,
                cost_matrix,
                tracks,
                detections,
                only_position=False,
                lambda_=0.98):
    if cost_matrix.size == 0:
        return cost_matrix
    gating_dim = 2 if only_position else 4
    gating_threshold = kalman_filter.chi2inv95[gating_dim]
    measurements = np.asarray([det.to_xyah() for det in detections])
    for row, track in enumerate(tracks):
        gating_distance = kf.gating_distance(
            track.mean,
            track.covariance,
            measurements,
            only_position,
            metric='maha')
        cost_matrix[row, gating_distance > gating_threshold] = np.inf
        cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_
                                                         ) * gating_distance
    return cost_matrix