jde_matching.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is borrow from https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py
"""

import scipy
import numpy as np
from scipy.spatial.distance import cdist
from ..motion import kalman_filter

__all__ = [
    'merge_matches',
    'linear_assignment',
    'cython_bbox_ious',
    'iou_distance',
    'embedding_distance',
    'fuse_motion',
]


def merge_matches(m1, m2, shape):
    O, P, Q = shape
    m1 = np.asarray(m1)
    m2 = np.asarray(m2)

    M1 = scipy.sparse.coo_matrix(
        (np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P))
    M2 = scipy.sparse.coo_matrix(
        (np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q))

    mask = M1 * M2
    match = mask.nonzero()
    match = list(zip(match[0], match[1]))
    unmatched_O = tuple(set(range(O)) - set([i for i, j in match]))
    unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match]))

    return match, unmatched_O, unmatched_Q


def linear_assignment(cost_matrix, thresh):
    if cost_matrix.size == 0:
        return np.empty(
            (0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(
                range(cost_matrix.shape[1]))
    matches, unmatched_a, unmatched_b = [], [], []
    import lap
    cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
    for ix, mx in enumerate(x):
        if mx >= 0:
            matches.append([ix, mx])
    unmatched_a = np.where(x < 0)[0]
    unmatched_b = np.where(y < 0)[0]
    matches = np.asarray(matches)
    return matches, unmatched_a, unmatched_b


def cython_bbox_ious(atlbrs, btlbrs):
    ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
    if ious.size == 0:
        return ious
    import cython_bbox
    ious = cython_bbox.bbox_overlaps(
        np.ascontiguousarray(
            atlbrs, dtype=np.float),
        np.ascontiguousarray(
            btlbrs, dtype=np.float))
    return ious


def iou_distance(atracks, btracks):
    """
    Compute cost based on IoU between two list[STrack].
    """
    if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) or (
            len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
        atlbrs = atracks
        btlbrs = btracks
    else:
        atlbrs = [track.tlbr for track in atracks]
        btlbrs = [track.tlbr for track in btracks]
    _ious = cython_bbox_ious(atlbrs, btlbrs)
    cost_matrix = 1 - _ious

    return cost_matrix


def embedding_distance(tracks, detections, metric='euclidean'):
    """
    Compute cost based on features between two list[STrack].
    """
    cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
    if cost_matrix.size == 0:
        return cost_matrix
    det_features = np.asarray(
        [track.curr_feat for track in detections], dtype=np.float)
    track_features = np.asarray(
        [track.smooth_feat for track in tracks], dtype=np.float)
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features,
                                        metric))  # Nomalized features
    return cost_matrix


def fuse_motion(kf,
                cost_matrix,
                tracks,
                detections,
                only_position=False,
                lambda_=0.98):
    if cost_matrix.size == 0:
        return cost_matrix
    gating_dim = 2 if only_position else 4
    gating_threshold = kalman_filter.chi2inv95[gating_dim]
    measurements = np.asarray([det.to_xyah() for det in detections])
    for row, track in enumerate(tracks):
        gating_distance = kf.gating_distance(
            track.mean,
            track.covariance,
            measurements,
            only_position,
            metric='maha')
        cost_matrix[row, gating_distance > gating_threshold] = np.inf
        cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_
                                                         ) * gating_distance
    return cost_matrix