optimizer.py 72.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
S
rename  
sneaxiy 已提交
18
from .wrapped_decorator import signature_safe_contextmanager
19

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
M
minqiyang 已提交
33
from .imperative import base as imperative_base
M
minqiyang 已提交
34
from .imperative.learning_rate_scheduler import LearningRateDecay
35 36 37 38
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
import copy
39

40
__all__ = [
Q
qiaolongfei 已提交
41
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
42
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
43
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
44
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
45
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer'
46
]
Q
Qiao Longfei 已提交
47 48 49 50 51 52


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
53 54
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
55 56
    """

X
Xin Pan 已提交
57
    def __init__(self, learning_rate, regularization=None, name=None):
M
minqiyang 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
        if framework._in_imperative_mode():
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))

W
whs 已提交
71
        self._name = name
D
dzhwinter 已提交
72
        self.regularization = regularization
73
        self._learning_rate = learning_rate
D
dzhwinter 已提交
74 75
        # the learning rate type should be inferenced from loss
        self._dtype = None
76
        # each program should have a independent learning rate
77
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
78
        self._learning_rate_map = dict()
79
        if isinstance(self._learning_rate, framework.Variable):
80 81
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
82 83 84 85 86
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
87
        self.helper = None
88 89 90 91
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
92

Q
Qiao Longfei 已提交
93
    def _create_global_learning_rate(self):
94 95 96 97 98 99 100 101 102 103 104
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
                self._learning_rate_map[framework.default_main_program(
                )] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype='float32' if self._dtype is None else self._dtype,
                    persistable=True)
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
105
            elif isinstance(self._learning_rate, LearningRateDecay):
106 107 108 109 110 111
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
                raise TypeError(
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
112
        else:
113 114 115 116 117
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return

118
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
119
                raise TypeError(
120 121
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
122

123 124 125 126 127 128 129 130
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
131

Y
yuyang18 已提交
132
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
133 134 135 136
        """
        get global decayed learning rate
        :return:
        """
137 138
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
139
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
140

Q
Qiao Longfei 已提交
141 142 143 144 145
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

146 147 148 149
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
150 151
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
152
        else:
W
Wu Yi 已提交
153
            if param_lr == 1.0:
Y
yuyang18 已提交
154
                return self._global_learning_rate()
W
Wu Yi 已提交
155
            else:
X
Xin Pan 已提交
156 157 158
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
159
                    return self._global_learning_rate() * param_lr
160 161 162 163 164 165 166

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
167
        """
168 169
        pass

170
    def _finish_update(self, block, parameters_and_grads):
171 172 173 174 175 176 177 178
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
179
            None
180 181 182
        """
        pass

183 184 185 186 187 188
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
189 190 191 192 193 194 195 196 197
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
198 199
        if self._name is not None:
            name = self._name + "_" + name
200 201
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
M
minqiyang 已提交
202 203
            if framework._in_imperative_mode():
                return self._accumulators[name][param.name]
204
            raise Exception("Accumulator {} already exists for parameter {}".
205
                            format(name, param.name))
206 207
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
208
        assert isinstance(self.helper, LayerHelper)
209 210 211 212 213

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
214
        var = self.helper.create_global_variable(
215
            name=var_name,
Q
Qiao Longfei 已提交
216
            persistable=True,
F
fengjiayi 已提交
217
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
218
            type=param.type,
219
            shape=shape)
Q
Qiao Longfei 已提交
220
        self.helper.set_variable_initializer(
221
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
222
        self._accumulators[name][param.name] = var
223
        return var
224 225 226 227 228 229 230 231 232 233 234

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
235 236
        if self._name is not None:
            name = self._name + "_" + name
237 238 239 240 241 242
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

243
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
244 245 246
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
247
          parameters_and_grads(list(tuple(Variable, Variable))):
248
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
249 250

        Returns:
251
          return_op_list: a list of operators that will complete one step of
252 253 254
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
255
        """
256 257 258 259 260
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
261
        # for parameters and extend _finish_update method to add custom ops.
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is None:
                continue
            with param_and_grad[0].block.program._optimized_guard(
                    param_and_grad), name_scope("optimizer"):
                if param_and_grad[0].trainable is True:
                    optimize_op = self._append_optimize_op(global_block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
290 291 292 293 294 295 296 297 298
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
299 300
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
316 317 318 319 320 321 322 323 324 325 326 327 328
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
329 330
        return new_param_grads, (table_param, table_grad), sgd_op

331 332 333
    def _append_dgc_ops(self, param_and_grad):
        pass

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
352

353 354
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        Examples:
            See examples in `apply_gradients`.
        """
        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
            callbacks.append(error_clip_callback)
        return append_backward(loss, parameter_list, no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
373

374 375
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

Q
Qiao Longfei 已提交
405 406
    def minimize(self,
                 loss,
407
                 startup_program=None,
Q
Qiao Longfei 已提交
408 409
                 parameter_list=None,
                 no_grad_set=None):
410 411 412 413 414
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
415

416 417 418 419 420 421
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
422

423 424 425
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
426
        """
427 428
        self._dtype = loss.dtype
        optimize_ops = []
429
        if framework._in_imperative_mode():
M
minqiyang 已提交
430
            if parameter_list is not None:
M
minqiyang 已提交
431
                parameters = parameter_list
M
minqiyang 已提交
432
            else:
433
                parameters = framework._imperative_tracer().all_parameters()
M
minqiyang 已提交
434 435 436

            params_grads = []
            for param in parameters:
437
                if not param.trainable:
438
                    continue
439 440 441 442 443 444 445 446
                if param._ivar._grad_ivar() is not None:
                    # create gradient variable
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True,
                        ivar=param._ivar._grad_ivar())
                    params_grads.append((param, grad_var))
447 448
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
449
                optimize_ops = self._create_optimization_pass(params_grads)
M
minqiyang 已提交
450
        else:
451
            program = loss.block.program
452 453 454
            with program_guard(program, startup_program):
                params_grads = self.backward(loss, startup_program,
                                             parameter_list, no_grad_set)
455 456 457
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
458
                optimize_ops = self.apply_gradients(params_grads)
M
minqiyang 已提交
459

Q
Qiao Longfei 已提交
460
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
461 462 463


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
464 465 466 467 468 469 470 471 472 473
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
474 475 476
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
477 478 479 480

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
481
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
482
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
483 484
    """

X
Xin Pan 已提交
485
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
486
        assert learning_rate is not None
Q
Qiao Longfei 已提交
487
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
488 489 490
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
491 492
        self.type = "sgd"

493 494
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
495

Q
Qiao Longfei 已提交
496 497 498 499 500 501
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
502
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
503
            },
M
minqiyang 已提交
504 505
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
506 507

        return sgd_op
508 509 510


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

525
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
526 527 528

        & else:

Q
qiaolongfei 已提交
529
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
530 531 532 533 534 535

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
536 537 538
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
539 540 541 542

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
543
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
544
            optimizer.minimize(cost)
545 546 547
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
548 549 550 551 552 553
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
554 555
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
556
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
557 558 559
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
560 561
        self.type = "momentum"
        self._momentum = momentum
562
        self._use_nesterov = bool(use_nesterov)
563 564 565 566 567

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
568
            self._add_accumulator(self._velocity_acc_str, p)
569 570 571 572 573 574 575 576 577 578 579 580 581

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
582
                "LearningRate": self._create_param_lr(param_and_grad)
583 584 585 586 587
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
588
            attrs={"mu": self._momentum,
M
minqiyang 已提交
589 590
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
591 592

        return momentum_op
593 594


595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
class DGCMomentumOptimizer(MomentumOptimizer):
    """

    Original paper is https://arxiv.org/abs/1712.01887

    DGC reduce the communication bandwidth by sending only the important gradients (sparse update):\
        only gradients larger than a threshold are transmitted.

    To avoid losing information, DGC accumulate the rest of the gradients locally.

    Eventually, these gradients become large enough to be transmitted.

    Thus, DGC send the large gradients immediately but eventually send all of the gradients over time.

    To ensure no loss of accuracy, DGC employs momentum correc-tionandlocal gradient clipping on top of the gradient sparsification to maintain model performance.

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
614

615 616
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
617

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
        2. Call momentum to optimize on the cost.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor.
        rampup_begin_step (int): The begining step from which gradient compression is implemented.
        rampup_step (int): How long it use the sparsity periods. Default is 1.
            for example: If the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 5, \
                it will use 0.75 at 0 step, and 0.9375 at 1 step, and so on. And when reach sparsity array ends, \
                it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity).
        use_nesterov (bool): Enables Nesterov momentum. True means use nesterov.
        local_grad_clip_norm (float): Clip norm value if needed.
        num_trainers: The number of training node.
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DGCMomentumOptimizer(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr),
                momentum=0.9,
                rampup_begin_step=1252,
                regularization=fluid.regularizer.L2Decay(1e-4))
            optimizer.minimize(cost)

    """

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
                 use_nesterov=False,
                 local_grad_clip_norm=None,
                 num_trainers=None,
                 regularization=None,
                 name=None):
        self._sparsity = sparsity
        self._rampup_step = rampup_step
        self._rampup_step_var = None

        self._rampup_begin_step = rampup_begin_step
        self._rampup_begin_step_var = None

        self._global_step_var = None
        self._local_grad_clip_norm = None
        self._clip_norm = None

        if local_grad_clip_norm is not None:
            assert isinstance(num_trainers, int)
            assert isinstance(local_grad_clip_norm, float)
            assert num_trainers > 0

            self._local_grad_clip_norm = local_grad_clip_norm
            self._num_trainers = num_trainers
            self._clip_norm = local_grad_clip_norm / (num_trainers *
                                                      num_trainers)

        super(DGCMomentumOptimizer, self).__init__(
            learning_rate, momentum, use_nesterov, regularization, name)

        core.init_dgc()

    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

    def _append_dgc_ops(self, param_and_grads):
        start_program = default_startup_program()
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
            counter_name='__g_dgc_counter__', begin=0)

        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
            name='__g_rampup_begin_step__',
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

        for param_var, grad_var in param_and_grads:
            var_numel = reduce(lambda x, y: x * y, param_var.shape)
            if var_numel < 16384 or \
                param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
                grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
                    param_var.dtype != core.VarDesc.VarType.FP32 :
                continue

            u_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_u__",
                value=0.0)
            v_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_v__",
                value=0.0)

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_k__",
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_encoded__",
                value=0.0,
                force_cpu=False)

            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._local_grad_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._clip_norm)
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
                         encoded_var)

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
            name = unique_name.generate(".".join([helper.name, 'tmp']))

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
            type="clip_by_norm",
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
                x=grad_var, max_norm=clip_norm, name=grad_var.name + "@DGC")

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
                encoded_var):
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
                "current_step": self._global_step_var
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
                "Grad_out": grad_var
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
                "rampup_step": float(self._rampup_step)
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])


853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
933 934
            },
            stop_gradient=True)
935 936 937 938

        return momentum_op


939
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
960 961 962
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
963
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
964 965 966 967 968 969

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
970 971 972
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
973 974 975 976
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
977
                 name=None,
X
xuezhong 已提交
978
                 initial_accumulator_value=0.0):
979 980
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
981
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
982 983 984
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
985 986
        self.type = "adagrad"
        self._epsilon = epsilon
987
        self.initial_accumulator_value = initial_accumulator_value
988 989 990 991 992

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
993
            self._add_accumulator(self._moment_acc_str, p)
994 995 996 997 998 999

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
1010

1011
        # Create the adagrad optimizer op
1012 1013 1014 1015 1016 1017
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1018
                "LearningRate": self._create_param_lr(param_and_grad)
1019 1020 1021
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1022 1023
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1024 1025

        return adagrad_op
1026 1027 1028


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
1056
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
1057
        name: A optional name prefix.
1058 1059 1060 1061 1062 1063
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
1064 1065 1066 1067 1068 1069 1070

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

1071 1072 1073
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1074 1075
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1076 1077 1078 1079 1080

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1081
                 epsilon=1e-8,
X
Xin Pan 已提交
1082
                 regularization=None,
Q
Qiao Longfei 已提交
1083
                 name=None,
Q
Qiao Longfei 已提交
1084
                 lazy_mode=False):
1085 1086 1087 1088
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1089
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1090 1091 1092
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1093 1094 1095 1096
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1097
        self._lazy_mode = lazy_mode
1098 1099 1100 1101 1102 1103

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1104 1105
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
1118 1119 1120 1121 1122 1123 1124 1125

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1126 1127 1128 1129 1130
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

1131
        # create the adam optimize op
1132 1133 1134 1135 1136
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1137
                "LearningRate": self._create_param_lr(param_and_grad),
1138 1139
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
1140 1141
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
1142 1143 1144 1145 1146 1147 1148 1149 1150
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
1151
                "epsilon": self._epsilon,
1152 1153
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
1154 1155
            },
            stop_gradient=True)
1156 1157 1158

        return adam_op

1159
    def _finish_update(self, block, param_and_grads):
1160 1161 1162
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1163
        main_block = block.program.global_block()
1164 1165 1166
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1167 1168
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
1169 1170 1171 1172 1173 1174 1175 1176
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1177 1178
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1179 1180 1181 1182 1183

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
1184 1185
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
1186 1187 1188


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1219 1220 1221
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1222 1223 1224 1225 1226 1227

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1228 1229 1230

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
1231 1232 1233
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
1234
    _beta1_pow_acc_str = "beta1_pow_acc"
1235 1236 1237 1238 1239

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1240
                 epsilon=1e-8,
X
Xin Pan 已提交
1241 1242
                 regularization=None,
                 name=None):
1243 1244 1245 1246
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1247
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
1248 1249 1250
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1251 1252 1253 1254 1255 1256 1257 1258
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
1259 1260
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
1261 1262 1263 1264 1265 1266
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
1267 1268 1269 1270 1271 1272 1273

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
1274 1275
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
1276 1277 1278 1279 1280 1281
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1282
                "LearningRate": self._create_param_lr(param_and_grad),
1283 1284
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
1285
                "Beta1Pow": beta1_pow_acc
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
1296 1297
            },
            stop_gradient=True)
1298 1299 1300

        return adamax_op

1301
    def _finish_update(self, block, parameters_and_grads):
1302 1303 1304
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1305
        main_block = block.program.global_block()
1306 1307 1308
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1309 1310
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1311 1312 1313 1314 1315 1316
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1317 1318
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1319 1320 1321


class DecayedAdagradOptimizer(Optimizer):
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1344 1345 1346
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1347 1348 1349 1350 1351 1352

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1353 1354 1355

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1356 1357 1358
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1359 1360 1361 1362 1363 1364
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1365 1366 1367 1368
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1369
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1370 1371 1372
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1400 1401
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1402 1403

        return decayed_adagrad_op
1404 1405


1406
class AdadeltaOptimizer(Optimizer):
1407 1408
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1409

1410
    Simple Adadelta optimizer with average squared grad state and
1411
    average squared update state.
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1424
        learning_rate(float): global learning rate
1425 1426
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1427 1428 1429
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1430 1431 1432 1433 1434 1435 1436

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1437 1438 1439

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1440
    """
1441

1442 1443 1444
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1445 1446 1447 1448 1449 1450
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1451 1452 1453 1454 1455 1456
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1457
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1458 1459 1460
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1461 1462 1463 1464 1465
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1466 1467
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1468 1469 1470 1471 1472 1473

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1474 1475
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1497 1498
                   "rho": self._rho},
            stop_gradient=True)
1499 1500 1501 1502

        return adadelta_op


Q
qingqing01 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1513
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1514 1515 1516 1517

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1518
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1519 1520 1521 1522 1523 1524

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1525
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1541 1542 1543 1544
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1545
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1546 1547 1548 1549 1550 1551
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1552
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1553 1554 1555
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1556
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1557
            set 0.0 by default.
1558 1559 1560 1561
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1562 1563 1564
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1578
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1579 1580 1581 1582 1583 1584

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1585
                 centered=False,
X
Xin Pan 已提交
1586 1587
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1588
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1589 1590 1591
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1605
        self._centered = centered
Q
qingqing01 已提交
1606 1607 1608 1609 1610 1611 1612 1613

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1614
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1624 1625
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1626 1627 1628 1629 1630 1631 1632
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1633
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1634 1635 1636 1637 1638
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1639 1640
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1641 1642 1643 1644
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1645 1646
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1647 1648
            },
            stop_gradient=True)
Q
qingqing01 已提交
1649 1650 1651 1652

        return rmsprop_op


Q
qiaolongfei 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1695 1696 1697
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1698 1699 1700
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1710 1711 1712

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1713 1714 1715 1716 1717
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1718 1719 1720 1721 1722 1723 1724
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1725
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1726 1727 1728
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1769 1770
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1771 1772 1773 1774

        return ftrl_op


1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1789
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1790
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1791
Ftrl = FtrlOptimizer
1792
LarsMomentum = LarsMomentumOptimizer
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1808 1809 1810
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1811
    Examples:
Q
qiaolongfei 已提交
1812 1813 1814

      .. code-block:: python

1815
        optimizer = fluid.optimizer.Momentum()
1816 1817
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1818 1819 1820 1821 1822
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1823 1824 1825 1826

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1827 1828 1829
    """

    def __init__(self,
W
wanghaoshuang 已提交
1830
                 average_window_rate,
1831 1832
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1833 1834 1835 1836
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1837 1838 1839
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1840

1841
        self.params_grads = []
1842 1843
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1844
            if param.do_model_average != False:
1845 1846 1847 1848
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1849
                    stop_gradient=True)
1850
                self.params_grads.append((param, grad))
1851

1852
        for param, grad in self.params_grads:
1853 1854
            if grad is None:
                continue
X
Xin Pan 已提交
1855 1856
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1857
                self._append_average_accumulate_op(param)
1858

1859 1860 1861 1862
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1863
                self._add_average_apply_op(block, param_grad)
1864 1865 1866 1867 1868

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1869
                self._add_average_restore_op(block, param_grad)
1870

1871
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1872 1873 1874 1875 1876 1877
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1878
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1879
        old_num_accumulates = block._clone_variable(
1880
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1881
        num_updates = block._clone_variable(
1882 1883 1884 1885 1886 1887
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1888 1889 1890 1891
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1892
        ops._elementwise_div(x=sum, y=tmp, out=param)
1893 1894

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1895 1896
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
1934 1935
            },
            stop_gradient=True)
1936

S
rename  
sneaxiy 已提交
1937
    @signature_safe_contextmanager
1938
    def apply(self, executor, need_restore=True):
1939 1940
        """Apply average values to parameters of current model.
        """
1941 1942 1943 1944 1945 1946
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1947 1948 1949 1950

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1951
        executor.run(self.restore_program)