Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
99128a5c
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
99128a5c
编写于
3月 27, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implement Cosine and Noam Decay
test=develop
上级
ec9c0874
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
97 addition
and
20 deletion
+97
-20
python/paddle/fluid/imperative/learning_rate_scheduler.py
python/paddle/fluid/imperative/learning_rate_scheduler.py
+52
-9
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+22
-10
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+2
-0
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+21
-1
未找到文件。
python/paddle/fluid/imperative/learning_rate_scheduler.py
浏览文件 @
99128a5c
...
...
@@ -14,10 +14,13 @@
from
__future__
import
print_function
import
math
from
..
import
unique_name
__all__
=
[
'PiecewiseDecay'
,
'NaturalExpDecay'
,
'ExponentialDecay'
,
'InverseTimeDecay'
'NoamDecay'
,
'PiecewiseDecay'
,
'NaturalExpDecay'
,
'ExponentialDecay'
,
'InverseTimeDecay'
,
'CosineDecay'
]
...
...
@@ -34,7 +37,7 @@ class LearningRateDecay(object):
def
__call__
(
self
):
lr
=
self
.
step
()
if
isinstance
(
lr
,
float
):
lr
=
self
.
_
create_lr_var
(
lr
)
lr
=
self
.
create_lr_var
(
lr
)
self
.
step_num
+=
self
.
step_size
return
lr
...
...
@@ -166,18 +169,58 @@ class PolynomialDecay(LearningRateDecay):
def
step
(
self
):
from
..
import
layers
tmp_step_num
=
self
.
step_num
tmp_decay_steps
=
self
.
decay_steps
if
self
.
cycle
:
div_res
=
layers
.
ceil
(
self
.
create_lr_var
(
self
.
step_num
/
self
.
decay_steps
))
self
.
create_lr_var
(
tmp_
step_num
/
self
.
decay_steps
))
zero_var
=
0.0
one_var
=
1.0
if
float
(
self
.
step_num
)
==
zero_var
:
if
float
(
tmp_
step_num
)
==
zero_var
:
div_res
=
one_var
decay_steps
=
self
.
decay_steps
*
div_res
tmp_
decay_steps
=
self
.
decay_steps
*
div_res
else
:
global_step
=
global_step
if
global_step
<
self
.
decay_steps
else
self
.
decay_steps
tmp_step_num
=
self
.
create_lr_var
(
tmp_step_num
if
tmp_step_num
<
self
.
decay_steps
else
self
.
decay_steps
)
decayed_lr
=
(
self
.
learning_rate
-
self
.
end_learning_rate
)
*
\
((
1
-
tmp_step_num
/
tmp_decay_steps
)
**
self
.
power
)
+
self
.
end_learning_rate
return
decayed_lr
decayed_lr
=
(
self
.
learning_rate
-
self
.
end_learning_rate
)
*
\
((
1
-
global_step
/
self
.
decay_steps
)
**
self
.
power
)
+
self
.
end_learning_rate
return
self
.
create_lr_var
(
decayed_lr
)
class
CosineDecay
(
LearningRateDecay
):
def
__init__
(
self
,
learning_rate
,
step_each_epoch
,
epochs
,
begin
=
0
,
step
=
1
,
dtype
=
'float32'
):
super
(
CosineDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
learning_rate
=
learning_rate
self
.
step_each_epoch
=
step_each_epoch
self
.
epochs
=
epochs
def
step
(
self
):
from
..
import
layers
cur_epoch
=
layers
.
floor
(
self
.
create_lr_var
(
self
.
step_num
/
self
.
step_each_epoch
))
decayed_lr
=
self
.
learning_rate
*
0.5
*
(
layers
.
cos
(
cur_epoch
*
math
.
pi
/
self
.
epochs
)
+
1
)
return
decayed_lr
class
NoamDecay
(
LearningRateDecay
):
def
__init__
(
self
,
d_model
,
warmup_steps
,
begin
=
1
,
step
=
1
,
dtype
=
'float32'
):
super
(
NoamDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
d_model
=
d_model
self
.
warmup_steps
=
warmup_steps
def
step
(
self
):
from
..
import
layers
a
=
self
.
create_lr_var
(
global_step
**-
0.5
)
b
=
self
.
create_lr_var
((
warmup_steps
**-
1.5
)
*
global_step
)
lr_value
=
(
d_model
**-
0.5
)
*
layers
.
elementwise_min
(
a
,
b
)
return
lr_value
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
99128a5c
...
...
@@ -69,13 +69,17 @@ def noam_decay(d_model, warmup_steps):
The decayed learning rate.
"""
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
(
1
)
if
imperative_base
.
enabled
():
decay
=
imperate_lr
.
NoamDecay
(
d_model
,
warmup_steps
)
return
decay
else
:
global_step
=
_decay_step_counter
(
1
)
a
=
global_step
**-
0.5
b
=
(
warmup_steps
**-
1.5
)
*
global_step
lr_value
=
(
d_model
**-
0.5
)
*
nn
.
elementwise_min
(
a
,
b
)
a
=
global_step
**-
0.5
b
=
(
warmup_steps
**-
1.5
)
*
global_step
lr_value
=
(
d_model
**-
0.5
)
*
nn
.
elementwise_min
(
a
,
b
)
return
lr_value
return
lr_value
def
exponential_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
...
...
@@ -364,12 +368,17 @@ def cosine_decay(learning_rate, step_each_epoch, epochs):
learning_rate = base_lr, step_each_epoch=10000, epochs=120)
"""
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
if
imperative_base
.
enabled
():
decay
=
imperate_lr
.
CosineDecay
(
learning_rate
,
step_each_epoch
,
epochs
)
return
decay
else
:
global_step
=
_decay_step_counter
()
cur_epoch
=
ops
.
floor
(
global_step
/
step_each_epoch
)
decayed_lr
=
learning_rate
*
0.5
*
(
ops
.
cos
(
cur_epoch
*
math
.
pi
/
epochs
)
+
1
)
return
decayed_lr
cur_epoch
=
ops
.
floor
(
global_step
/
step_each_epoch
)
decayed_lr
=
learning_rate
*
0.5
*
(
ops
.
cos
(
cur_epoch
*
math
.
pi
/
epochs
)
+
1
)
return
decayed_lr
def
append_LARS
(
params_grads
,
learning_rate
,
weight_decay
):
...
...
@@ -391,6 +400,9 @@ def append_LARS(params_grads, learning_rate, weight_decay):
/ (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
"""
assert
not
imperative_base
.
enabled
(
),
"append_LARS is NOT supported in dygraph mode now"
def
_balanced_weight
(
param_norm
,
grad_norm
):
if
weight_decay
==
1.0
:
return
grad_norm
+
param_norm
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
99128a5c
...
...
@@ -195,6 +195,8 @@ class Optimizer(object):
name
=
self
.
_name
+
"_"
+
name
if
(
name
in
self
.
_accumulators
and
param
.
name
in
self
.
_accumulators
[
name
]):
if
framework
.
_in_imperative_mode
():
return
self
.
_accumulators
[
name
][
param
.
name
]
raise
Exception
(
"Accumulator {} already exists for parameter {}"
.
format
(
name
,
param
.
name
))
if
shape
==
None
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
99128a5c
...
...
@@ -43,7 +43,7 @@ class MLP(fluid.imperative.Layer):
class
TestImperativeOptimizerBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_num
=
1
0
self
.
batch_num
=
2
0
def
get_optimizer
(
self
):
raise
NotImplementedError
()
...
...
@@ -214,5 +214,25 @@ class TestImperativeOptimizerPolynomialDecay(TestImperativeOptimizerBase):
self
.
_check_mlp
()
class
TestImperativeOptimizerCosineDecay
(
TestImperativeOptimizerBase
):
def
get_optimizer
(
self
):
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
0.1
,
step_each_epoch
=
10000
,
epochs
=
120
))
return
optimizer
def
test_sgd
(
self
):
self
.
_check_mlp
()
class
TestImperativeOptimizerNoamDecay
(
TestImperativeOptimizerBase
):
def
get_optimizer
(
self
):
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
noam_decay
(
d_model
=
512
,
warmup_steps
=
8000
))
return
optimizer
def
test_sgd
(
self
):
self
.
_check_mlp
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录