ema.py 6.5 KB
Newer Older
W
Wenyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import weakref
22 23 24
from copy import deepcopy

__all__ = ['ModelEMA', 'SimpleModelEMA']
W
Wenyu 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


class ModelEMA(object):
    """
    Exponential Weighted Average for Deep Neutal Networks
    Args:
        model (nn.Layer): Detector of model.
        decay (int):  The decay used for updating ema parameter.
            Ema's parameter are updated with the formula:
           `ema_param = decay * ema_param + (1 - decay) * cur_param`.
            Defaults is 0.9998.
        ema_decay_type (str): type in ['threshold', 'normal', 'exponential'],
            'threshold' as default.
        cycle_epoch (int): The epoch of interval to reset ema_param and
            step. Defaults is -1, which means not reset. Its function is to
            add a regular effect to ema, which is set according to experience
            and is effective when the total training epoch is large.
42 43 44
        ema_black_list (set|list|tuple, optional): The custom EMA black_list.
            Blacklist of weight names that will not participate in EMA
            calculation. Default: None.
W
Wenyu 已提交
45 46 47 48 49 50
    """

    def __init__(self,
                 model,
                 decay=0.9998,
                 ema_decay_type='threshold',
51 52
                 cycle_epoch=-1,
                 ema_black_list=None):
W
Wenyu 已提交
53 54 55 56 57
        self.step = 0
        self.epoch = 0
        self.decay = decay
        self.ema_decay_type = ema_decay_type
        self.cycle_epoch = cycle_epoch
58 59 60 61 62 63 64 65
        self.ema_black_list = self._match_ema_black_list(
            model.state_dict().keys(), ema_black_list)
        self.state_dict = dict()
        for k, v in model.state_dict().items():
            if k in self.ema_black_list:
                self.state_dict[k] = v
            else:
                self.state_dict[k] = paddle.zeros_like(v)
W
Wenyu 已提交
66 67 68 69 70 71 72 73 74 75

        self._model_state = {
            k: weakref.ref(p)
            for k, p in model.state_dict().items()
        }

    def reset(self):
        self.step = 0
        self.epoch = 0
        for k, v in self.state_dict.items():
76 77 78 79
            if k in self.ema_black_list:
                self.state_dict[k] = v
            else:
                self.state_dict[k] = paddle.zeros_like(v)
W
Wenyu 已提交
80 81 82 83

    def resume(self, state_dict, step=0):
        for k, v in state_dict.items():
            if k in self.state_dict:
84 85 86 87
                if self.state_dict[k].dtype == v.dtype:
                    self.state_dict[k] = v
                else:
                    self.state_dict[k] = v.astype(self.state_dict[k].dtype)
W
Wenyu 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        self.step = step

    def update(self, model=None):
        if self.ema_decay_type == 'threshold':
            decay = min(self.decay, (1 + self.step) / (10 + self.step))
        elif self.ema_decay_type == 'exponential':
            decay = self.decay * (1 - math.exp(-(self.step + 1) / 2000))
        else:
            decay = self.decay
        self._decay = decay

        if model is not None:
            model_dict = model.state_dict()
        else:
            model_dict = {k: p() for k, p in self._model_state.items()}
            assert all(
                [v is not None for _, v in model_dict.items()]), 'python gc.'

        for k, v in self.state_dict.items():
107 108 109 110
            if k not in self.ema_black_list:
                v = decay * v + (1 - decay) * model_dict[k]
                v.stop_gradient = True
                self.state_dict[k] = v
W
Wenyu 已提交
111 112 113 114 115 116 117
        self.step += 1

    def apply(self):
        if self.step == 0:
            return self.state_dict
        state_dict = dict()
        for k, v in self.state_dict.items():
118 119 120 121 122 123 124 125
            if k in self.ema_black_list:
                v.stop_gradient = True
                state_dict[k] = v
            else:
                if self.ema_decay_type != 'exponential':
                    v = v / (1 - self._decay**self.step)
                v.stop_gradient = True
                state_dict[k] = v
W
Wenyu 已提交
126 127 128 129 130
        self.epoch += 1
        if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
            self.reset()

        return state_dict
131 132 133 134 135 136 137 138 139

    def _match_ema_black_list(self, weight_name, ema_black_list=None):
        out_list = set()
        if ema_black_list:
            for name in weight_name:
                for key in ema_black_list:
                    if key in name:
                        out_list.add(name)
        return out_list
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184


class SimpleModelEMA(object):
    """
    Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
    Keep a moving average of everything in the model state_dict (parameters and buffers).
    This is intended to allow functionality like
    https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
    A smoothed version of the weights is necessary for some training schemes to perform well.
    This class is sensitive where it is initialized in the sequence of model init,
    GPU assignment and distributed training wrappers.
    """

    def __init__(self, model=None, decay=0.9996):
        """
        Args:
            model (nn.Module): model to apply EMA.
            decay (float): ema decay reate.
        """
        self.model = deepcopy(model)
        self.decay = decay

    def update(self, model, decay=None):
        if decay is None:
            decay = self.decay

        with paddle.no_grad():
            state = {}
            msd = model.state_dict()
            for k, v in self.model.state_dict().items():
                if paddle.is_floating_point(v):
                    v *= decay
                    v += (1.0 - decay) * msd[k].detach()
                state[k] = v
            self.model.set_state_dict(state)

    def resume(self, state_dict, step=0):
        state = {}
        msd = state_dict
        for k, v in self.model.state_dict().items():
            if paddle.is_floating_point(v):
                v = msd[k].detach()
            state[k] = v
        self.model.set_state_dict(state)
        self.step = step