ema.py 3.8 KB
Newer Older
W
Wenyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import weakref


class ModelEMA(object):
    """
    Exponential Weighted Average for Deep Neutal Networks
    Args:
        model (nn.Layer): Detector of model.
        decay (int):  The decay used for updating ema parameter.
            Ema's parameter are updated with the formula:
           `ema_param = decay * ema_param + (1 - decay) * cur_param`.
            Defaults is 0.9998.
        ema_decay_type (str): type in ['threshold', 'normal', 'exponential'],
            'threshold' as default.
        cycle_epoch (int): The epoch of interval to reset ema_param and
            step. Defaults is -1, which means not reset. Its function is to
            add a regular effect to ema, which is set according to experience
            and is effective when the total training epoch is large.
    """

    def __init__(self,
                 model,
                 decay=0.9998,
                 ema_decay_type='threshold',
                 cycle_epoch=-1):
        self.step = 0
        self.epoch = 0
        self.decay = decay
        self.state_dict = dict()
        for k, v in model.state_dict().items():
            self.state_dict[k] = paddle.zeros_like(v)
        self.ema_decay_type = ema_decay_type
        self.cycle_epoch = cycle_epoch

        self._model_state = {
            k: weakref.ref(p)
            for k, p in model.state_dict().items()
        }

    def reset(self):
        self.step = 0
        self.epoch = 0
        for k, v in self.state_dict.items():
            self.state_dict[k] = paddle.zeros_like(v)

    def resume(self, state_dict, step=0):
        for k, v in state_dict.items():
            if k in self.state_dict:
69 70 71 72
                if self.state_dict[k].dtype == v.dtype:
                    self.state_dict[k] = v
                else:
                    self.state_dict[k] = v.astype(self.state_dict[k].dtype)
W
Wenyu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        self.step = step

    def update(self, model=None):
        if self.ema_decay_type == 'threshold':
            decay = min(self.decay, (1 + self.step) / (10 + self.step))
        elif self.ema_decay_type == 'exponential':
            decay = self.decay * (1 - math.exp(-(self.step + 1) / 2000))
        else:
            decay = self.decay
        self._decay = decay

        if model is not None:
            model_dict = model.state_dict()
        else:
            model_dict = {k: p() for k, p in self._model_state.items()}
            assert all(
                [v is not None for _, v in model_dict.items()]), 'python gc.'

        for k, v in self.state_dict.items():
            v = decay * v + (1 - decay) * model_dict[k]
            v.stop_gradient = True
            self.state_dict[k] = v
        self.step += 1

    def apply(self):
        if self.step == 0:
            return self.state_dict
        state_dict = dict()
        for k, v in self.state_dict.items():
            if self.ema_decay_type != 'exponential':
                v = v / (1 - self._decay**self.step)
            v.stop_gradient = True
            state_dict[k] = v
        self.epoch += 1
        if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
            self.reset()

        return state_dict