det_keypoint_unite_infer.py 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
import json
17
import cv2
W
wangguanzhong 已提交
18
import math
19 20
import numpy as np
import paddle
W
wangguanzhong 已提交
21
import yaml
22

23
from det_keypoint_unite_utils import argsparser
24
from preprocess import decode_image
W
wangguanzhong 已提交
25 26 27
from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log
from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint
from visualize import visualize_pose
W
wangguanzhong 已提交
28 29
from benchmark_utils import PaddleInferBenchmark
from utils import get_current_memory_mb
30 31 32 33 34 35
from keypoint_postprocess import translate_to_ori_images

KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}
36 37


38
def predict_with_given_det(image, det_res, keypoint_detector,
39
                           keypoint_batch_size, run_benchmark):
40 41
    keypoint_res = {}

42
    rec_images, records, det_rects = keypoint_detector.get_person_from_rect(
43
        image, det_res)
44 45 46 47 48

    if len(det_rects) == 0:
        keypoint_res['keypoint'] = [[], []]
        return keypoint_res

49 50 51
    keypoint_vector = []
    score_vector = []

W
wangguanzhong 已提交
52 53 54 55 56
    rect_vector = det_rects
    keypoint_results = keypoint_detector.predict_image(
        rec_images, run_benchmark, repeats=10, visual=False)
    keypoint_vector, score_vector = translate_to_ori_images(keypoint_results,
                                                            np.array(records))
57
    keypoint_res['keypoint'] = [
W
wangguanzhong 已提交
58
        keypoint_vector.tolist(), score_vector.tolist()
59 60 61
    ] if len(keypoint_vector) > 0 else [[], []]
    keypoint_res['bbox'] = rect_vector
    return keypoint_res
62 63


W
wangguanzhong 已提交
64 65 66
def topdown_unite_predict(detector,
                          topdown_keypoint_detector,
                          image_list,
67 68
                          keypoint_batch_size=1,
                          save_res=False):
W
wangguanzhong 已提交
69
    det_timer = detector.get_timer()
70
    store_res = []
71
    for i, img_file in enumerate(image_list):
W
wangguanzhong 已提交
72 73
        # Decode image in advance in det + pose prediction
        det_timer.preprocess_time_s.start()
74
        image, _ = decode_image(img_file, {})
W
wangguanzhong 已提交
75 76 77
        det_timer.preprocess_time_s.end()

        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
78 79 80
            results = detector.predict_image(
                [image], run_benchmark=True, repeats=10)

W
wangguanzhong 已提交
81 82 83 84 85
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
        else:
W
wangguanzhong 已提交
86
            results = detector.predict_image([image], visual=False)
87 88 89 90 91 92 93
        results = detector.filter_box(results, FLAGS.det_threshold)
        if results['boxes_num'] > 0:
            keypoint_res = predict_with_given_det(
                image, results, topdown_keypoint_detector, keypoint_batch_size,
                FLAGS.run_benchmark)

            if save_res:
J
JYChen 已提交
94
                save_name = img_file if isinstance(img_file, str) else i
95
                store_res.append([
J
JYChen 已提交
96
                    save_name, keypoint_res['bbox'],
97 98 99 100 101
                    [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
                ])
        else:
            results["keypoint"] = [[], []]
            keypoint_res = results
W
wangguanzhong 已提交
102 103 104 105 106 107 108 109
        if FLAGS.run_benchmark:
            cm, gm, gu = get_current_memory_mb()
            topdown_keypoint_detector.cpu_mem += cm
            topdown_keypoint_detector.gpu_mem += gm
            topdown_keypoint_detector.gpu_util += gu
        else:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
W
wangguanzhong 已提交
110
            visualize_pose(
W
wangguanzhong 已提交
111 112
                img_file,
                keypoint_res,
W
wangguanzhong 已提交
113
                visual_thresh=FLAGS.keypoint_threshold,
W
wangguanzhong 已提交
114
                save_dir=FLAGS.output_dir)
115 116 117 118 119 120 121 122 123 124
    if save_res:
        """
        1) store_res: a list of image_data
        2) image_data: [imageid, rects, [keypoints, scores]]
        3) rects: list of rect [xmin, ymin, xmax, ymax]
        4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
        5) scores: mean of all joint conf
        """
        with open("det_keypoint_unite_image_results.json", 'w') as wf:
            json.dump(store_res, wf, indent=4)
125 126


W
wangguanzhong 已提交
127 128 129
def topdown_unite_predict_video(detector,
                                topdown_keypoint_detector,
                                camera_id,
130 131
                                keypoint_batch_size=1,
                                save_res=False):
132
    video_name = 'output.mp4'
133 134 135 136
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
W
wangguanzhong 已提交
137
        video_name = os.path.split(FLAGS.video_file)[-1]
138
    # Get Video info : resolution, fps, frame count
139 140
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
141 142 143 144
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

145 146 147
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
148
    fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
149
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
150
    index = 0
151
    store_res = []
Z
zhiboniu 已提交
152 153
    keypoint_smoothing = KeypointSmoothing(
        width, height, filter_type=FLAGS.filter_type, beta=0.05)
154

155 156 157 158 159
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        index += 1
160
        print('detect frame: %d' % (index))
161 162

        frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
W
wangguanzhong 已提交
163 164

        results = detector.predict_image([frame2], visual=False)
165 166 167 168
        results = detector.filter_box(results, FLAGS.det_threshold)
        if results['boxes_num'] == 0:
            writer.write(frame)
            continue
169 170 171

        keypoint_res = predict_with_given_det(
            frame2, results, topdown_keypoint_detector, keypoint_batch_size,
172
            FLAGS.run_benchmark)
Z
zhiboniu 已提交
173

Z
zhiboniu 已提交
174
        if FLAGS.smooth and len(keypoint_res['keypoint'][0]) == 1:
175
            current_keypoints = np.array(keypoint_res['keypoint'][0][0])
Z
zhiboniu 已提交
176 177
            smooth_keypoints = keypoint_smoothing.smooth_process(
                current_keypoints)
178 179

            keypoint_res['keypoint'][0][0] = smooth_keypoints.tolist()
180

W
wangguanzhong 已提交
181
        im = visualize_pose(
182 183
            frame,
            keypoint_res,
W
wangguanzhong 已提交
184
            visual_thresh=FLAGS.keypoint_threshold,
185
            returnimg=True)
186

187 188 189 190 191
        if save_res:
            store_res.append([
                index, keypoint_res['bbox'],
                [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
            ])
192 193 194 195 196 197 198

        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()
W
wangguanzhong 已提交
199
    print('output_video saved to: {}'.format(out_path))
200 201 202 203 204 205 206 207 208 209
    if save_res:
        """
        1) store_res: a list of frame_data
        2) frame_data: [frameid, rects, [keypoints, scores]]
        3) rects: list of rect [xmin, ymin, xmax, ymax]
        4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
        5) scores: mean of all joint conf
        """
        with open("det_keypoint_unite_video_results.json", 'w') as wf:
            json.dump(store_res, wf, indent=4)
210 211


212 213
class KeypointSmoothing(object):
    # The following code are modified from:
Z
zhiboniu 已提交
214 215 216 217 218 219 220 221 222 223
    # https://github.com/jaantollander/OneEuroFilter

    def __init__(self,
                 width,
                 height,
                 filter_type,
                 alpha=0.5,
                 fc_d=0.1,
                 fc_min=0.1,
                 beta=0.1,
Z
zhiboniu 已提交
224
                 thres_mult=0.3):
225 226 227
        super(KeypointSmoothing, self).__init__()
        self.image_width = width
        self.image_height = height
Z
zhiboniu 已提交
228 229 230 231
        self.threshold = np.array([
            0.005, 0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01,
            0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01
        ]) * thres_mult
232 233 234 235 236 237 238
        self.filter_type = filter_type
        self.alpha = alpha
        self.dx_prev_hat = None
        self.x_prev_hat = None
        self.fc_d = fc_d
        self.fc_min = fc_min
        self.beta = beta
Z
zhiboniu 已提交
239

Z
zhiboniu 已提交
240
        if self.filter_type == 'OneEuro':
241
            self.smooth_func = self.one_euro_filter
Z
zhiboniu 已提交
242
        elif self.filter_type == 'EMA':
Z
zhiboniu 已提交
243
            self.smooth_func = self.ema_filter
244 245 246
        else:
            raise ValueError('filter type must be one_euro or ema')

Z
zhiboniu 已提交
247 248 249 250 251
    def smooth_process(self, current_keypoints):
        if self.x_prev_hat is None:
            self.x_prev_hat = current_keypoints[:, :2]
            self.dx_prev_hat = np.zeros(current_keypoints[:, :2].shape)
            return current_keypoints
252
        else:
Z
zhiboniu 已提交
253
            result = current_keypoints
254 255
            num_keypoints = len(current_keypoints)
            for i in range(num_keypoints):
Z
zhiboniu 已提交
256 257 258 259 260 261 262 263 264
                result[i, :2] = self.smooth(current_keypoints[i, :2],
                                            self.threshold[i], i)
            return result

    def smooth(self, current_keypoint, threshold, index):
        distance = np.sqrt(
            np.square((current_keypoint[0] - self.x_prev_hat[index][0]) /
                      self.image_width) + np.square((current_keypoint[
                          1] - self.x_prev_hat[index][1]) / self.image_height))
265
        if distance < threshold:
Z
zhiboniu 已提交
266
            result = self.x_prev_hat[index]
267
        else:
Z
zhiboniu 已提交
268 269
            result = self.smooth_func(current_keypoint, self.x_prev_hat[index],
                                      index)
Z
zhiboniu 已提交
270

271 272
        return result

Z
zhiboniu 已提交
273
    def one_euro_filter(self, x_cur, x_pre, index):
274 275
        te = 1
        self.alpha = self.smoothing_factor(te, self.fc_d)
Z
zhiboniu 已提交
276 277 278
        dx_cur = (x_cur - x_pre) / te
        dx_cur_hat = self.exponential_smoothing(dx_cur, self.dx_prev_hat[index])

279 280
        fc = self.fc_min + self.beta * np.abs(dx_cur_hat)
        self.alpha = self.smoothing_factor(te, fc)
Z
zhiboniu 已提交
281 282 283
        x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
        self.dx_prev_hat[index] = dx_cur_hat
        self.x_prev_hat[index] = x_cur_hat
284 285
        return x_cur_hat

Z
zhiboniu 已提交
286 287 288 289 290
    def ema_filter(self, x_cur, x_pre, index):
        x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
        self.x_prev_hat[index] = x_cur_hat
        return x_cur_hat

291 292 293
    def smoothing_factor(self, te, fc):
        r = 2 * math.pi * fc * te
        return r / (r + 1)
Z
zhiboniu 已提交
294 295 296

    def exponential_smoothing(self, x_cur, x_pre, index=0):
        return self.alpha * x_cur + (1 - self.alpha) * x_pre
297 298


299
def main():
W
wangguanzhong 已提交
300 301 302 303
    deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
304
    detector_func = 'Detector'
W
wangguanzhong 已提交
305
    if arch == 'PicoDet':
306 307
        detector_func = 'DetectorPicoDet'

W
wangguanzhong 已提交
308
    detector = eval(detector_func)(FLAGS.det_model_dir,
309 310 311 312 313 314 315
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
W
wangguanzhong 已提交
316 317
                                   enable_mkldnn=FLAGS.enable_mkldnn,
                                   threshold=FLAGS.det_threshold)
318

W
wangguanzhong 已提交
319
    topdown_keypoint_detector = KeyPointDetector(
320
        FLAGS.keypoint_model_dir,
G
Guanghua Yu 已提交
321
        device=FLAGS.device,
322
        run_mode=FLAGS.run_mode,
323
        batch_size=FLAGS.keypoint_batch_size,
324 325 326 327 328
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
Z
zhiboniu 已提交
329 330
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)
W
wangguanzhong 已提交
331 332 333
    keypoint_arch = topdown_keypoint_detector.pred_config.arch
    assert KEYPOINT_SUPPORT_MODELS[
        keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.'
334 335 336 337

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        topdown_unite_predict_video(detector, topdown_keypoint_detector,
338 339
                                    FLAGS.camera_id, FLAGS.keypoint_batch_size,
                                    FLAGS.save_res)
340 341 342
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
343
        topdown_unite_predict(detector, topdown_keypoint_detector, img_list,
344
                              FLAGS.keypoint_batch_size, FLAGS.save_res)
W
wangguanzhong 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            topdown_keypoint_detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.det_model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')
            keypoint_model_dir = FLAGS.keypoint_model_dir
            keypoint_model_info = {
                'model_name': keypoint_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(topdown_keypoint_detector, img_list, keypoint_model_info,
                      FLAGS.keypoint_batch_size, 'KeyPoint')
363 364 365 366 367 368 369


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
370 371 372
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
373 374

    main()