pipeline.py 25.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob

import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
24
import copy
25
from collections import Sequence
Z
zhiboniu 已提交
26 27 28
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
29 30 31 32 33 34 35

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
J
JYChen 已提交
36 37 38
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
from python.action_infer import ActionRecognizer
Z
zhiboniu 已提交
39
from python.action_utils import KeyPointBuff, ActionVisualHelper
J
JYChen 已提交
40

41
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
J
JYChen 已提交
42
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
43
from python.preprocess import decode_image
J
JYChen 已提交
44
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
45 46

from pptracking.python.mot_sde_infer import SDE_Detector
W
wangguanzhong 已提交
47
from pptracking.python.mot.visualize import plot_tracking
48 49 50 51 52 53 54 55 56 57 58 59 60


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
61 62
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
Z
zhiboniu 已提交
82
                 video_dir=None,
83
                 camera_id=-1,
W
wangguanzhong 已提交
84 85
                 enable_attr=False,
                 enable_action=True,
86 87 88 89 90 91 92 93 94 95 96
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output'):
        self.multi_camera = False
        self.is_video = False
Z
zhiboniu 已提交
97 98
        self.output_dir = output_dir
        self.vis_result = cfg['visual']
99
        self.input = self._parse_input(image_file, image_dir, video_file,
Z
zhiboniu 已提交
100
                                       video_dir, camera_id)
101 102 103 104 105 106
        if self.multi_camera:
            self.predictor = [
                PipePredictor(
                    cfg,
                    is_video=True,
                    multi_camera=True,
W
wangguanzhong 已提交
107 108
                    enable_attr=enable_attr,
                    enable_action=enable_action,
109 110 111 112 113 114 115 116 117 118 119 120 121
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
                    output_dir=output_dir) for i in self.input
            ]
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
W
wangguanzhong 已提交
122 123
                enable_attr=enable_attr,
                enable_action=enable_action,
124 125 126 127 128 129 130 131 132
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
                output_dir=output_dir)
133 134
            if self.is_video:
                self.predictor.set_file_name(video_file)
135

Z
zhiboniu 已提交
136 137
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
138 139 140 141 142 143 144 145 146

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
Z
zhiboniu 已提交
147 148 149 150 151 152 153
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
154
                self.multi_camera = True
Z
zhiboniu 已提交
155 156
                videof.sort()
                input = videof
157
            else:
Z
zhiboniu 已提交
158
                input = videof[0]
159 160 161
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
162 163
            self.multi_camera = False
            input = camera_id
164 165 166 167 168 169 170 171 172 173 174 175 176 177
            self.is_video = True

        else:
            raise ValueError(
                "Illegal Input, please set one of ['video_file','camera_id','image_file', 'image_dir']"
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
178 179 180 181 182 183 184
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
            mtmct_process(
                multi_res,
                self.input,
                mtmct_vis=self.vis_result,
                output_dir=self.output_dir)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

        else:
            self.predictor.run(self.input)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
        3. Tracking -> KeyPoint -> Action Recognition

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
211 212
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
W
wangguanzhong 已提交
231 232
                 enable_attr=False,
                 enable_action=False,
233 234 235 236 237 238 239 240 241 242
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output'):

W
wangguanzhong 已提交
243 244 245 246 247 248 249 250 251 252 253
        if enable_attr and not cfg.get('ATTR', False):
            ValueError(
                'enable_attr is set to True, please set ATTR in config file')
        if enable_action and (not cfg.get('ACTION', False) or
                              not cfg.get('KPT', False)):
            ValueError(
                'enable_action is set to True, please set KPT and ACTION in config file'
            )

        self.with_attr = cfg.get('ATTR', False) and enable_attr
        self.with_action = cfg.get('ACTION', False) and enable_action
Z
zhiboniu 已提交
254
        self.with_mtmct = cfg.get('REID', False) and multi_camera
W
wangguanzhong 已提交
255 256 257 258
        if self.with_attr:
            print('Attribute Recognition enabled')
        if self.with_action:
            print('Action Recognition enabled')
Z
zhiboniu 已提交
259 260 261 262 263 264 265
        if multi_camera:
            if not self.with_mtmct:
                print(
                    'Warning!!! MTMCT enabled, but cannot find REID config in [infer_cfg.yml], please check!'
                )
            else:
                print("MTMCT enabled")
W
wangguanzhong 已提交
266

267 268 269 270 271
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir

J
JYChen 已提交
272
        self.warmup_frame = self.cfg['warmup_frame']
273 274
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
275
        self.file_name = None
Z
zhiboniu 已提交
276
        self.collector = DataCollector()
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
            self.mot_predictor = SDE_Detector(
                model_dir, tracker_config, device, run_mode, batch_size,
                trt_min_shape, trt_max_shape, trt_opt_shape, trt_calib_mode,
                cpu_threads, enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
            if self.with_action:
J
JYChen 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
                kpt_cfg = self.cfg['KPT']
                kpt_model_dir = kpt_cfg['model_dir']
                kpt_batch_size = kpt_cfg['batch_size']
                action_cfg = self.cfg['ACTION']
                action_model_dir = action_cfg['model_dir']
                action_batch_size = action_cfg['batch_size']
                action_frames = action_cfg['max_frames']
                display_frames = action_cfg['display_frames']
                self.coord_size = action_cfg['coord_size']

                self.kpt_predictor = KeyPointDetector(
                    kpt_model_dir,
                    device,
                    run_mode,
                    kpt_batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    use_dark=False)
Z
zhiboniu 已提交
335
                self.kpt_buff = KeyPointBuff(action_frames)
J
JYChen 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349

                self.action_predictor = ActionRecognizer(
                    action_model_dir,
                    device,
                    run_mode,
                    action_batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    window_size=action_frames)

Z
zhiboniu 已提交
350 351 352 353 354 355 356 357 358 359
                self.action_visual_helper = ActionVisualHelper(display_frames)

        if self.with_mtmct:
            reid_cfg = self.cfg['REID']
            model_dir = reid_cfg['model_dir']
            batch_size = reid_cfg['batch_size']
            self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
                                       trt_min_shape, trt_max_shape,
                                       trt_opt_shape, trt_calib_mode,
                                       cpu_threads, enable_mkldnn)
360

361 362 363
    def set_file_name(self, path):
        self.file_name = os.path.split(path)[-1]

364
    def get_result(self):
Z
zhiboniu 已提交
365
        return self.collector.get_res()
366 367 368 369 370 371

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
372
        self.pipe_timer.info()
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
391 392
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
422
    def predict_video(self, video_file):
423 424 425
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
426
        capture = cv2.VideoCapture(video_file)
427
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
            ret, frame = capture.read()
            if not ret:
                break

            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['mot'].start()
Z
zhiboniu 已提交
451 452
            res = self.mot_predictor.predict_image(
                [copy.deepcopy(frame)], visual=False)
453 454 455 456 457 458 459

            if frame_id > self.warmup_frame:
                self.pipe_timer.module_time['mot'].end()

            # mot output format: id, class, score, xmin, ymin, xmax, ymax
            mot_res = parse_mot_res(res)

460 461 462 463 464 465 466 467 468 469 470 471
            # nothing detected
            if len(mot_res['boxes']) == 0:
                frame_id += 1
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
                if self.cfg['visual']:
                    _, _, fps = self.pipe_timer.get_total_time()
                    im = self.visualize_video(frame, mot_res, frame_id,
                                              fps)  # visualize
                    writer.write(im)
                continue

472 473
            self.pipeline_res.update(mot_res, 'mot')
            if self.with_attr or self.with_action:
J
JYChen 已提交
474 475
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                    frame, mot_res)
476 477 478 479 480 481 482 483 484 485 486

            if self.with_attr:
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()
                attr_res = self.attr_predictor.predict_image(
                    crop_input, visual=False)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()
                self.pipeline_res.update(attr_res, 'attr')

            if self.with_action:
J
JYChen 已提交
487 488
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['kpt'].start()
J
JYChen 已提交
489 490 491 492 493 494 495 496 497
                kpt_pred = self.kpt_predictor.predict_image(
                    crop_input, visual=False)
                keypoint_vector, score_vector = translate_to_ori_images(
                    kpt_pred, np.array(new_bboxes))
                kpt_res = {}
                kpt_res['keypoint'] = [
                    keypoint_vector.tolist(), score_vector.tolist()
                ] if len(keypoint_vector) > 0 else [[], []]
                kpt_res['bbox'] = ori_bboxes
J
JYChen 已提交
498 499 500
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['kpt'].end()

J
JYChen 已提交
501 502
                self.pipeline_res.update(kpt_res, 'kpt')

Z
zhiboniu 已提交
503 504
                self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
                state = self.kpt_buff.get_state(
J
JYChen 已提交
505 506 507
                )  # whether frame num is enough or lost tracker

                action_res = {}
508
                if state:
J
JYChen 已提交
509 510
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['action'].start()
Z
zhiboniu 已提交
511
                    collected_keypoint = self.kpt_buff.get_collected_keypoint(
J
JYChen 已提交
512 513 514 515 516
                    )  # reoragnize kpt output with ID
                    action_input = parse_mot_keypoint(collected_keypoint,
                                                      self.coord_size)
                    action_res = self.action_predictor.predict_skeleton_with_mot(
                        action_input)
J
JYChen 已提交
517 518
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['action'].end()
J
JYChen 已提交
519 520 521
                    self.pipeline_res.update(action_res, 'action')

                if self.cfg['visual']:
Z
zhiboniu 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                    self.action_visual_helper.update(action_res)

            if self.with_mtmct:
                crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                    frame, mot_res)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['reid'].start()
                reid_res = self.reid_predictor.predict_batch(crop_input)

                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['reid'].end()

                reid_res_dict = {
                    'features': reid_res,
                    "qualities": img_qualities,
                    "rects": rects
                }
                self.pipeline_res.update(reid_res_dict, 'reid')

            self.collector.append(frame_id, self.pipeline_res)
542 543 544 545 546 547 548

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
549 550 551
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
                                          fps)  # visualize
552 553 554 555 556
                writer.write(im)

        writer.release()
        print('save result to {}'.format(out_path))

557
    def visualize_video(self, image, result, frame_id, fps):
Z
zhiboniu 已提交
558
        mot_res = copy.deepcopy(result.get('mot'))
559 560
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
561
            scores = mot_res['boxes'][:, 2]
562 563 564 565 566 567
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
568 569 570
            scores = np.zeros([0])
        image = plot_tracking(
            image, boxes, ids, scores, frame_id=frame_id, fps=fps)
571 572 573 574 575 576 577 578

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

J
JYChen 已提交
579 580 581 582 583 584 585 586 587 588 589
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

        action_res = result.get('action')
        if action_res is not None:
            image = visualize_action(image, mot_res['boxes'],
Z
zhiboniu 已提交
590
                                     self.action_visual_helper, "Falling")
J
JYChen 已提交
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
609 610
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
611 612 613 614 615 616 617 618
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
619
            cv2.imwrite(out_path, im)
620 621 622 623 624 625 626 627 628
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
Z
zhiboniu 已提交
629 630 631 632
        FLAGS.video_dir, FLAGS.camera_id, FLAGS.enable_attr,
        FLAGS.enable_action, FLAGS.device, FLAGS.run_mode, FLAGS.trt_min_shape,
        FLAGS.trt_max_shape, FLAGS.trt_opt_shape, FLAGS.trt_calib_mode,
        FLAGS.cpu_threads, FLAGS.enable_mkldnn, FLAGS.output_dir)
633 634 635 636 637 638 639 640 641 642 643 644 645

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()