op_test.py 19.2 KB
Newer Older
1 2
import unittest
import numpy as np
3
import random
4
import itertools
Q
Qiao Longfei 已提交
5
import paddle.v2.fluid.core as core
Y
Yu Yang 已提交
6
import collections
Q
Qiao Longfei 已提交
7 8 9 10
from paddle.v2.fluid.backward import append_backward_ops
from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder
11 12


13 14 15 16 17 18 19 20 21
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
22
def create_op(scope, op_type, inputs, outputs, attrs):
23 24
    kwargs = dict()

Y
Yu Yang 已提交
25
    def __create_var__(name, var_name):
Q
QI JUN 已提交
26
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
27 28
        kwargs[name].append(var_name)

Q
qijun 已提交
29
    for in_name, in_dup in Operator.get_op_inputs(op_type):
30 31 32 33
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
Q
qijun 已提交
34
                for sub_in_name, _ in sub_in:
Y
Yu Yang 已提交
35
                    __create_var__(in_name, sub_in_name)
36
            else:
Y
Yu Yang 已提交
37
                __create_var__(in_name, in_name)
38

Q
qijun 已提交
39
    for out_name, out_dup in Operator.get_op_outputs(op_type):
40 41 42
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
43 44
                sub_out = outputs[out_name]
                for sub_out_name, _ in sub_out:
Y
Yu Yang 已提交
45
                    __create_var__(out_name, sub_out_name)
46
            else:
Y
Yu Yang 已提交
47
                __create_var__(out_name, out_name)
48

Q
qijun 已提交
49
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
50 51
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
52 53 54 55
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
56
    def __set_input__(var_name, var):
57 58 59 60 61 62 63 64 65 66 67
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
68

Q
qijun 已提交
69
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
70 71 72
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
73
                for sub_in_name, sub_in_val in sub_in:
Y
Yu Yang 已提交
74
                    __set_input__(sub_in_name, sub_in_val)
75
            else:
Y
Yu Yang 已提交
76
                __set_input__(in_name, inputs[in_name])
77 78 79 80 81 82


def get_numeric_gradient(scope,
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
83
                         output_names,
84 85
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
86
    # FIXME: change this method by compile time concepts
87 88 89 90 91 92
    set_input(scope, op, inputs, core.CPUPlace())

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    def get_output():
Y
Yu Yang 已提交
93
        sum = []
Y
Yancey 已提交
94
        for output_name in output_names:
D
dzhwinter 已提交
95
            op.run(scope, core.CPUPlace())
Y
Yu Yang 已提交
96 97 98
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
99 100 101

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
102 103 104 105 106
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
Y
Yancey1989 已提交
107 108
    elif tensor_to_check_dtype == core.DataType.INT64:
        tensor_to_check_dtype = np.int64
109 110 111 112 113 114 115 116 117
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
Y
Yancey1989 已提交
118 119
        elif tensor_to_check_dtype == np.int64:
            return tensor.get_int64_element(i)
120 121 122 123 124 125
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
Y
Yancey1989 已提交
126 127
        elif tensor_to_check_dtype == np.int64:
            tensor.set_int64_element(i, e)
128 129 130
        else:
            tensor.set_double_element(i, e)

131 132 133 134
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
Q
qijun 已提交
135
            set_input(scope, op, inputs, core.CPUPlace())
136 137

        # get one input element throw it's index i.
138
        origin = __get_elem__(tensor_to_check, i)
139 140
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
141
        __set_elem__(tensor_to_check, i, x_pos)
142 143 144
        y_pos = get_output()

        if in_place:
Q
qijun 已提交
145
            set_input(scope, op, inputs, core.CPUPlace())
146 147

        x_neg = origin - delta
148
        __set_elem__(tensor_to_check, i, x_neg)
149 150
        y_neg = get_output()

151
        __set_elem__(tensor_to_check, i, origin)
152 153 154 155 156
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
184
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


199
class OpTest(unittest.TestCase):
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
215 216 217 218 219 220
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
221 222 223 224 225
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
226 227 228 229 230 231 232 233 234 235 236 237
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

238
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
239 240 241 242 243 244 245 246 247 248 249 250
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
251 252 253
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
D
dzhwinter 已提交
267 268 269 270
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yang Yang(Tony) 已提交
271 272

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
273 274 275
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
276 277 278 279 280 281 282 283 284 285
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

286 287
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
288 289 290 291
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
                for sub_out_name, expect in sub_out:
Y
Yang Yang(Tony) 已提交
292
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
293 294
                    actual = outs[idx]
                    actual_t = np.array(actual)
295 296
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
297 298
                    self.assertTrue(
                        np.allclose(
299
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
300 301
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
302 303
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
304 305
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
306
            else:
Y
Yang Yang(Tony) 已提交
307
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
308 309
                actual = outs[idx]
                actual_t = np.array(actual)
310
                expect = self.outputs[out_name]
311
                expect_t = expect[0] if isinstance(expect, tuple) else expect
312 313
                self.assertTrue(
                    np.allclose(
314
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
315
                    "Output (" + out_name + ") has diff at " + str(place))
316
                if isinstance(expect, tuple):
Q
QI JUN 已提交
317
                    self.assertListEqual(actual.lod(), expect[1],
318 319
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
320

321
    def check_output(self, atol=1e-5):
Q
qijun 已提交
322
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
323
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
Q
qijun 已提交
324 325
            places.append(core.GPUPlace(0))
        for place in places:
326
            self.check_output_with_place(place, atol)
Q
qijun 已提交
327

328 329 330 331 332 333 334 335 336 337 338 339
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
340
                return ("%s Variable %s max gradient diff %f over limit %f, "
341
                        "the first error element is %d, %f, %f") % (
342
                            msg_prefix, name, max_diff, max_relative_error,
343
                            offset, a.flatten()[offset], b.flatten()[offset])
344 345 346 347 348

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
349
                   output_names,
350
                   no_grad_set=None,
351
                   numeric_grad_delta=0.005,
352
                   in_place=False,
Q
Qiao Longfei 已提交
353 354
                   max_relative_error=0.005,
                   user_defined_grads=None):
355
        self.scope = core.Scope()
Q
qijun 已提交
356
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
357
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
358
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
359
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
360
                            op_attrs)
361 362 363
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
364 365
        if not type(output_names) is list:
            output_names = [output_names]
Q
Qiao Longfei 已提交
366
        numeric_grads = user_defined_grads or [
367 368 369 370 371
            get_numeric_gradient(
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
372
                output_names,
373
                delta=numeric_grad_delta,
374 375
                in_place=in_place) for input_to_check in inputs_to_check
        ]
Q
qijun 已提交
376
        cpu_place = core.CPUPlace()
Y
Yu Yang 已提交
377 378
        cpu_analytic_grads = self._get_gradient(inputs_to_check, cpu_place,
                                                output_names, no_grad_set)
379

Y
Yu Yang 已提交
380 381
        self.__assert_is_close(numeric_grads, cpu_analytic_grads,
                               inputs_to_check, max_relative_error,
Q
qijun 已提交
382 383 384 385
                               "Gradient Check On %s" % str(cpu_place))

        if core.is_compile_gpu() and self.op.support_gpu():
            gpu_place = core.GPUPlace(0)
Y
Yu Yang 已提交
386 387
            gpu_analytic_grads = self._get_gradient(inputs_to_check, gpu_place,
                                                    output_names, no_grad_set)
388

Q
qijun 已提交
389
            self.__assert_is_close(numeric_grads, gpu_analytic_grads,
Y
Yu Yang 已提交
390
                                   inputs_to_check, max_relative_error,
Q
qijun 已提交
391 392
                                   "Gradient Check On %s" % str(gpu_place))

Y
Yu Yang 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
407 408 409 410 411
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
452
        op = block.append_op(
Y
Yu Yang 已提交
453 454 455 456 457
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
458 459 460
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
461 462
        mean_inputs = map(block.var, output_names)
        if len(mean_inputs) == 1:
F
fengjiayi 已提交
463
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
Q
QI JUN 已提交
464
            op = block.append_op(
Y
Yu Yang 已提交
465
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
466 467
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
468 469 470
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
F
fengjiayi 已提交
471
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
Q
QI JUN 已提交
472
                op = block.append_op(
Y
Yu Yang 已提交
473 474 475
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
476 477
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
478 479
                avg_sum.append(cur_avg_loss)

F
fengjiayi 已提交
480
            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
Q
QI JUN 已提交
481
            op_sum = block.append_op(
Y
Yu Yang 已提交
482
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
483 484
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
485

F
fengjiayi 已提交
486
            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
Q
QI JUN 已提交
487
            op_loss = block.append_op(
Y
Yu Yang 已提交
488 489 490 491
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
492 493
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
494 495 496 497 498 499 500 501 502 503 504

        param_grad_list = append_backward_ops(
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
D
dzhwinter 已提交
505 506 507
        return map(
            np.array,
            executor.run(prog, feed_dict, fetch_list, return_numpy=False))