import unittest import numpy as np import random import itertools import paddle.v2.fluid.core as core import collections from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.op import Operator from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.framework import Program, OpProtoHolder def randomize_probability(batch_size, class_num, dtype='float32'): prob = np.random.uniform( 0.1, 1.0, size=(batch_size, class_num)).astype(dtype) prob_sum = prob.sum(axis=1) for i in xrange(len(prob)): prob[i] /= prob_sum[i] return prob def create_op(scope, op_type, inputs, outputs, attrs): kwargs = dict() def __create_var__(name, var_name): scope.var(var_name).get_tensor() kwargs[name].append(var_name) for in_name, in_dup in Operator.get_op_inputs(op_type): if in_name in inputs: kwargs[in_name] = [] if in_dup: sub_in = inputs[in_name] for sub_in_name, _ in sub_in: __create_var__(in_name, sub_in_name) else: __create_var__(in_name, in_name) for out_name, out_dup in Operator.get_op_outputs(op_type): if out_name in outputs: kwargs[out_name] = [] if out_dup: sub_out = outputs[out_name] for sub_out_name, _ in sub_out: __create_var__(out_name, sub_out_name) else: __create_var__(out_name, out_name) for attr_name in Operator.get_op_attr_names(op_type): if attr_name in attrs: kwargs[attr_name] = attrs[attr_name] return Operator(op_type, **kwargs) def set_input(scope, op, inputs, place): def __set_input__(var_name, var): if isinstance(var, tuple) or isinstance(var, np.ndarray): tensor = scope.find_var(var_name).get_tensor() if isinstance(var, tuple): tensor.set_lod(var[1]) var = var[0] tensor.set_dims(var.shape) tensor.set(var, place) elif isinstance(var, float): scope.find_var(var_name).set_float(var) elif isinstance(var, int): scope.find_var(var_name).set_int(var) for in_name, in_dup in Operator.get_op_inputs(op.type()): if in_name in inputs: if in_dup: sub_in = inputs[in_name] for sub_in_name, sub_in_val in sub_in: __set_input__(sub_in_name, sub_in_val) else: __set_input__(in_name, inputs[in_name]) def get_numeric_gradient(scope, op, inputs, input_to_check, output_names, delta=0.005, in_place=False): # FIXME: change this method by compile time concepts set_input(scope, op, inputs, core.CPUPlace()) def product(dim): return reduce(lambda a, b: a * b, dim, 1) def get_output(): sum = [] for output_name in output_names: op.run(scope, core.CPUPlace()) sum.append( np.array(scope.find_var(output_name).get_tensor()).mean()) return np.array(sum).mean() tensor_to_check = scope.find_var(input_to_check).get_tensor() tensor_size = product(tensor_to_check.get_dims()) tensor_to_check_dtype = tensor_to_check.dtype() if tensor_to_check_dtype == core.DataType.FP32: tensor_to_check_dtype = np.float32 elif tensor_to_check_dtype == core.DataType.FP64: tensor_to_check_dtype = np.float64 elif tensor_to_check_dtype == core.DataType.INT64: tensor_to_check_dtype = np.int64 else: raise ValueError("Not supported data type " + str( tensor_to_check_dtype)) gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype) def __get_elem__(tensor, i): if tensor_to_check_dtype == np.float32: return tensor.get_float_element(i) elif tensor_to_check_dtype == np.int64: return tensor.get_int64_element(i) else: return tensor.get_double_element(i) def __set_elem__(tensor, i, e): if tensor_to_check_dtype == np.float32: tensor.set_float_element(i, e) elif tensor_to_check_dtype == np.int64: tensor.set_int64_element(i, e) else: tensor.set_double_element(i, e) # we only compute gradient of one element each time. # we use a for loop to compute the gradient of every element. for i in xrange(tensor_size): if in_place: set_input(scope, op, inputs, core.CPUPlace()) # get one input element throw it's index i. origin = __get_elem__(tensor_to_check, i) # add delta to it, run op and then get the sum of the result tensor. x_pos = origin + delta __set_elem__(tensor_to_check, i, x_pos) y_pos = get_output() if in_place: set_input(scope, op, inputs, core.CPUPlace()) x_neg = origin - delta __set_elem__(tensor_to_check, i, x_neg) y_neg = get_output() __set_elem__(tensor_to_check, i, origin) gradient_flat[i] = (y_pos - y_neg) / delta / 2 return gradient_flat.reshape(tensor_to_check.get_dims()) def append_input_output(block, op_proto, np_list, is_input): '''Insert VarDesc and generate Python variable instance''' proto_list = op_proto.inputs if is_input else op_proto.outputs def create_var(block, name, np_list, var_proto): if name not in np_list: assert var_proto.intermediate, "{} not found".format(name) shape = None lod_level = None else: np_value = np_list[name] if isinstance(np_value, tuple): shape = list(np_value[0].shape) lod_level = len(np_value[1]) else: shape = list(np_value.shape) lod_level = 0 return block.create_var( dtype="float32", shape=shape, lod_level=lod_level, name=name) var_dict = {} for var_proto in proto_list: var_name = str(var_proto.name) if is_input: if (var_name not in np_list) and var_proto.dispensable: continue assert (var_name in np_list) or (var_proto.dispensable), \ "Missing {} as input".format(var_name) if var_proto.duplicable: assert isinstance(np_list[var_name], list), \ "Duplicable {} should be set as list".format(var_name) var_list = [] for (name, np_value) in np_list[var_name]: var_list.append( create_var(block, name, {name: np_value}, var_proto)) var_dict[var_name] = var_list else: var_dict[var_name] = create_var(block, var_name, np_list, var_proto) return var_dict class OpTest(unittest.TestCase): @classmethod def setUpClass(cls): '''Fix random seeds to remove randomness from tests''' cls._np_rand_state = np.random.get_state() cls._py_rand_state = random.getstate() np.random.seed(123) random.seed(124) @classmethod def tearDownClass(cls): '''Restore random seeds''' np.random.set_state(cls._np_rand_state) random.setstate(cls._py_rand_state) def feed_var(self, input_vars, place): feed_map = {} for var_name in input_vars: if isinstance(input_vars[var_name], list): for name, np_value in self.inputs[var_name]: tensor = core.LoDTensor() if isinstance(np_value, tuple): tensor.set(np_value[0], place) tensor.set_lod(np_value[1]) else: tensor.set(np_value, place) feed_map[name] = tensor else: tensor = core.LoDTensor() if isinstance(self.inputs[var_name], tuple): tensor.set(self.inputs[var_name][0], place) tensor.set_lod(self.inputs[var_name][1]) else: tensor.set(self.inputs[var_name], place) feed_map[var_name] = tensor return feed_map def check_output_with_place(self, place, atol): op_proto = OpProtoHolder.instance().get_op_proto(self.op_type) program = Program() block = program.global_block() inputs = append_input_output(block, op_proto, self.inputs, True) outputs = append_input_output(block, op_proto, self.outputs, False) op = block.append_op( type=self.op_type, inputs=inputs, outputs=outputs, attrs=self.attrs if hasattr(self, "attrs") else dict()) # infer variable type and infer shape in compile-time op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) fetch_list = [] for var_name, var in outputs.iteritems(): if var_name in self.outputs: if isinstance(var, list): for v in var: fetch_list.append(v) else: fetch_list.append(var) feed_map = self.feed_var(inputs, place) exe = Executor(place) outs = exe.run(program, feed=feed_map, fetch_list=fetch_list, return_numpy=False) for out_name, out_dup in Operator.get_op_outputs(self.op_type): if out_name not in self.outputs: continue def find_actual(target_name, fetch_list): found = [ i for i, var in enumerate(fetch_list) if var.name == target_name ] self.assertTrue( len(found) == 1, "Found {} {}".format( len(found), target_name)) return found[0] if out_dup: sub_out = self.outputs[out_name] if not isinstance(sub_out, list): raise AssertionError("sub_out type %s is not list", type(sub_out)) for sub_out_name, expect in sub_out: idx = find_actual(sub_out_name, fetch_list) actual = outs[idx] actual_t = np.array(actual) expect_t = expect[0] \ if isinstance(expect, tuple) else expect self.assertTrue( np.allclose( actual_t, expect_t, atol=atol), "Output (" + sub_out_name + ") has diff at " + str(place)) if isinstance(expect, tuple): self.assertListEqual( actual.lod(), expect[1], "Output (" + sub_out_name + ") has different lod at " + str(place)) else: idx = find_actual(out_name, fetch_list) actual = outs[idx] actual_t = np.array(actual) expect = self.outputs[out_name] expect_t = expect[0] if isinstance(expect, tuple) else expect self.assertTrue( np.allclose( actual_t, expect_t, atol=atol), "Output (" + out_name + ") has diff at " + str(place)) if isinstance(expect, tuple): self.assertListEqual(actual.lod(), expect[1], "Output (" + out_name + ") has different lod at " + str(place)) def check_output(self, atol=1e-5): places = [core.CPUPlace()] if core.is_compile_gpu() and core.op_support_gpu(self.op_type): places.append(core.GPUPlace(0)) for place in places: self.check_output_with_place(place, atol) def __assert_is_close(self, numeric_grads, analytic_grads, names, max_relative_error, msg_prefix): for a, b, name in itertools.izip(numeric_grads, analytic_grads, names): abs_a = np.abs(a) abs_a[abs_a < 1e-3] = 1 diff_mat = np.abs(a - b) / abs_a max_diff = np.max(diff_mat) def err_msg(): offset = np.argmax(diff_mat > max_relative_error) return ("%s Variable %s max gradient diff %f over limit %f, " "the first error element is %d, %f, %f") % ( msg_prefix, name, max_diff, max_relative_error, offset, a.flatten()[offset], b.flatten()[offset]) self.assertLessEqual(max_diff, max_relative_error, err_msg()) def check_grad(self, inputs_to_check, output_names, no_grad_set=None, numeric_grad_delta=0.005, in_place=False, max_relative_error=0.005, user_defined_grads=None): self.scope = core.Scope() op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_outputs = self.outputs if hasattr(self, "outputs") else dict() op_attrs = self.attrs if hasattr(self, "attrs") else dict() self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs, op_attrs) if no_grad_set is None: no_grad_set = set() if not type(output_names) is list: output_names = [output_names] numeric_grads = user_defined_grads or [ get_numeric_gradient( self.scope, self.op, self.inputs, input_to_check, output_names, delta=numeric_grad_delta, in_place=in_place) for input_to_check in inputs_to_check ] cpu_place = core.CPUPlace() cpu_analytic_grads = self._get_gradient(inputs_to_check, cpu_place, output_names, no_grad_set) self.__assert_is_close(numeric_grads, cpu_analytic_grads, inputs_to_check, max_relative_error, "Gradient Check On %s" % str(cpu_place)) if core.is_compile_gpu() and self.op.support_gpu(): gpu_place = core.GPUPlace(0) gpu_analytic_grads = self._get_gradient(inputs_to_check, gpu_place, output_names, no_grad_set) self.__assert_is_close(numeric_grads, gpu_analytic_grads, inputs_to_check, max_relative_error, "Gradient Check On %s" % str(gpu_place)) @staticmethod def _create_var_descs_(block, var_dict): # FIXME: Try unify with `append_input_output` for param_name in var_dict: var = var_dict[param_name] if not isinstance(var, list) and not isinstance(var, tuple): var = [(param_name, var, None)] if not isinstance(var[0], list) and not isinstance(var[0], tuple): var = [(param_name, var[0], var[1])] for i, item in enumerate(var): if not isinstance(item[0], basestring): item = [[param_name] + list(item)] if len(item) == 2: if isinstance(item[1], tuple): var[i] = [item[0], item[1][0], item[1][1]] else: # only set var name and value, set lod to None var[i] = list(item) + [None] var_descs = [(block.create_var( name=name, shape=each.shape, dtype=each.dtype), each, lod) for name, each, lod in var] yield param_name, var_descs @staticmethod def _merge_list(iterable): return reduce(lambda a, b: list(a) + list(b), iterable, []) @staticmethod def _numpy_to_lod_tensor(np_value, lod, place): tensor = core.LoDTensor() tensor.set(np_value, place) if lod is not None: tensor.set_lod(lod) return tensor def _get_gradient(self, input_to_check, place, output_names, no_grad_set): prog = Program() block = prog.global_block() inputs_with_np = { key: value for (key, value) in OpTest._create_var_descs_( block, getattr(self, 'inputs', {})) } outputs_with_np = { key: val for (key, val) in OpTest._create_var_descs_( block, getattr(self, 'outputs', {})) } inputs = { k: [item[0] for item in inputs_with_np[k]] for k in inputs_with_np } outputs = { k: [item[0] for item in outputs_with_np[k]] for k in outputs_with_np } op = block.append_op( type=self.op_type, inputs=inputs, outputs=outputs, attrs=getattr(self, 'attrs', {})) # infer variable type and infer shape in compile-time op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) mean_inputs = map(block.var, output_names) if len(mean_inputs) == 1: loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1]) op = block.append_op( inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean') op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) else: avg_sum = [] for cur_loss in mean_inputs: cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1]) op = block.append_op( inputs={"X": [cur_loss]}, outputs={"Out": [cur_avg_loss]}, type="mean") op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) avg_sum.append(cur_avg_loss) loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1]) op_sum = block.append_op( inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum') op_sum.desc.infer_var_type(block.desc) op_sum.desc.infer_shape(block.desc) loss = block.create_var(dtype=loss_sum.dtype, shape=[1]) op_loss = block.append_op( inputs={"X": loss_sum}, outputs={"Out": loss}, type='scale', attrs={'scale': 1.0 / float(len(avg_sum))}) op_loss.desc.infer_var_type(block.desc) op_loss.desc.infer_shape(block.desc) param_grad_list = append_backward_ops( loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set) feed_dict = { item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place) for p_name in inputs_with_np for item in inputs_with_np[p_name] } fetch_list = [g for p, g in param_grad_list] executor = Executor(place) return map( np.array, executor.run(prog, feed_dict, fetch_list, return_numpy=False))