vgg.py 8.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VGG16 benchmark in Fluid"""
from __future__ import print_function

import sys
import time
import numpy as np
20
import paddle
D
dzhwinter 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
import paddle.fluid as fluid
import paddle.fluid.core as core
import argparse
import functools

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--skip_batch_num',
    type=int,
    default=5,
    help='The first num of minibatch num to skip, for better performance test')
parser.add_argument(
    '--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--pass_num', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='GPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
parser.add_argument(
    '--data_format',
    type=str,
    default='NCHW',
    choices=['NCHW', 'NHWC'],
    help='The data order, now only support NCHW.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
parser.add_argument(
    '--with_test',
    action='store_true',
    help='If set, test the testset during training.')
args = parser.parse_args()


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
    return fc2


def main():
    if args.data_set == "cifar10":
        classdim = 10
        if args.data_format == 'NCHW':
            data_shape = [3, 32, 32]
        else:
            data_shape = [32, 32, 3]
    else:
        classdim = 102
        if args.data_format == 'NCHW':
            data_shape = [3, 224, 224]
        else:
            data_shape = [224, 224, 3]

    # Input data
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    net = vgg16_bn_drop(images)
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        inference_program = fluid.io.get_inference_program(
            target_vars=[batch_acc, batch_size_tensor])

    # Optimization
    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    opts = optimizer.minimize(avg_cost)

    fluid.memory_optimize(fluid.default_main_program())

    # Initialize executor
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)

    # Parameter initialization
    exe.run(fluid.default_startup_program())

    # data reader
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
            buf_size=5120),
        batch_size=args.batch_size)
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10()
        if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
        batch_size=args.batch_size)

    # test
    def test(exe):
        test_accuracy = fluid.average.WeightedAverage()
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

            acc, weight = exe.run(inference_program,
                                  feed={"pixel": img_data,
                                        "label": y_data},
                                  fetch_list=[batch_acc, batch_size_tensor])
            test_accuracy.add(value=acc, weight=weight)
        return test_accuracy.eval()

    iters, num_samples, start_time = 0, 0, time.time()
    accuracy = fluid.average.WeightedAverage()
172
    train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
D
dzhwinter 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    for pass_id in range(args.pass_num):
        accuracy.reset()
        train_accs = []
        train_losses = []
        for batch_id, data in enumerate(train_reader()):
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

188
            loss, acc, weight = train_exe.run(
D
dzhwinter 已提交
189 190
                feed={"pixel": img_data,
                      "label": y_data},
K
kolinwei 已提交
191 192 193
                fetch_list=[
                    avg_cost.name, batch_acc.name, batch_size_tensor.name
                ])
194
            accuracy.add(value=np.array(np.mean(acc)), weight=np.mean(weight))
D
dzhwinter 已提交
195
            iters += 1
D
dzhwinter 已提交
196
            num_samples += len(y_data)
197 198
            loss = np.mean(np.array(loss))
            acc = np.mean(np.array(acc))
D
dzhwinter 已提交
199 200 201 202 203
            print(
                "Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
                (pass_id, iters, loss, acc)
            )  # The accuracy is the accumulation of batches, but not the current batch.

D
dzhwinter 已提交
204
        # pass_train_acc = accuracy.eval()
D
dzhwinter 已提交
205 206
        train_losses.append(loss)
        train_accs.append(acc)
D
dzhwinter 已提交
207 208 209 210 211 212
        print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
              (pass_id, np.mean(train_losses), np.mean(train_accs)))
        train_elapsed = time.time() - start_time
        examples_per_sec = num_samples / train_elapsed
        print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
              (num_samples, train_elapsed, examples_per_sec))
D
dzhwinter 已提交
213 214 215
        # evaluation
        if args.with_test:
            pass_test_acc = test(exe)
D
dzhwinter 已提交
216
        exit(0)
D
dzhwinter 已提交
217 218 219


def print_arguments():
D
dzhwinter 已提交
220
    print('----------- vgg Configuration Arguments -----------')
D
dzhwinter 已提交
221 222 223 224 225 226 227 228
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    print_arguments()
    main()