# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VGG16 benchmark in Fluid""" from __future__ import print_function import sys import time import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core import argparse import functools parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--batch_size', type=int, default=128, help="Batch size for training.") parser.add_argument( '--skip_batch_num', type=int, default=5, help='The first num of minibatch num to skip, for better performance test') parser.add_argument( '--iterations', type=int, default=80, help='The number of minibatches.') parser.add_argument( '--learning_rate', type=float, default=1e-3, help="Learning rate for training.") parser.add_argument('--pass_num', type=int, default=50, help="No. of passes.") parser.add_argument( '--device', type=str, default='GPU', choices=['CPU', 'GPU'], help="The device type.") parser.add_argument( '--data_format', type=str, default='NCHW', choices=['NCHW', 'NHWC'], help='The data order, now only support NCHW.') parser.add_argument( '--data_set', type=str, default='cifar10', choices=['cifar10', 'flowers'], help='Optional dataset for benchmark.') parser.add_argument( '--with_test', action='store_true', help='If set, test the testset during training.') args = parser.parse_args() def vgg16_bn_drop(input): def conv_block(input, num_filter, groups, dropouts): return fluid.nets.img_conv_group( input=input, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type='max') conv1 = conv_block(input, 64, 2, [0.3, 0]) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) fc1 = fluid.layers.fc(input=drop, size=512, act=None) bn = fluid.layers.batch_norm(input=fc1, act='relu') drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) fc2 = fluid.layers.fc(input=drop2, size=512, act=None) return fc2 def main(): if args.data_set == "cifar10": classdim = 10 if args.data_format == 'NCHW': data_shape = [3, 32, 32] else: data_shape = [32, 32, 3] else: classdim = 102 if args.data_format == 'NCHW': data_shape = [3, 224, 224] else: data_shape = [224, 224, 3] # Input data images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program net = vgg16_bn_drop(images) predict = fluid.layers.fc(input=net, size=classdim, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) # inference program inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): inference_program = fluid.io.get_inference_program( target_vars=[batch_acc, batch_size_tensor]) # Optimization optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) opts = optimizer.minimize(avg_cost) fluid.memory_optimize(fluid.default_main_program()) # Initialize executor place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0) exe = fluid.Executor(place) # Parameter initialization exe.run(fluid.default_startup_program()) # data reader train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10() if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), buf_size=5120), batch_size=args.batch_size) test_reader = paddle.batch( paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), batch_size=args.batch_size) # test def test(exe): test_accuracy = fluid.average.WeightedAverage() for batch_id, data in enumerate(test_reader()): img_data = np.array(map(lambda x: x[0].reshape(data_shape), data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) acc, weight = exe.run(inference_program, feed={"pixel": img_data, "label": y_data}, fetch_list=[batch_acc, batch_size_tensor]) test_accuracy.add(value=acc, weight=weight) return test_accuracy.eval() iters, num_samples, start_time = 0, 0, time.time() accuracy = fluid.average.WeightedAverage() train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name) for pass_id in range(args.pass_num): accuracy.reset() train_accs = [] train_losses = [] for batch_id, data in enumerate(train_reader()): if iters == args.skip_batch_num: start_time = time.time() num_samples = 0 if iters == args.iterations: break img_data = np.array(map(lambda x: x[0].reshape(data_shape), data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) loss, acc, weight = train_exe.run( feed={"pixel": img_data, "label": y_data}, fetch_list=[ avg_cost.name, batch_acc.name, batch_size_tensor.name ]) accuracy.add(value=np.array(np.mean(acc)), weight=np.mean(weight)) iters += 1 num_samples += len(y_data) loss = np.mean(np.array(loss)) acc = np.mean(np.array(acc)) print( "Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" % (pass_id, iters, loss, acc) ) # The accuracy is the accumulation of batches, but not the current batch. # pass_train_acc = accuracy.eval() train_losses.append(loss) train_accs.append(acc) print("Pass: %d, Loss: %f, Train Accuray: %f\n" % (pass_id, np.mean(train_losses), np.mean(train_accs))) train_elapsed = time.time() - start_time examples_per_sec = num_samples / train_elapsed print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' % (num_samples, train_elapsed, examples_per_sec)) # evaluation if args.with_test: pass_test_acc = test(exe) exit(0) def print_arguments(): print('----------- vgg Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == "__main__": print_arguments() main()