mobilenet_v3.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
Guanghua Yu 已提交
15 16 17 18 19 20 21 22 23 24 25 26
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register
import math

__all__ = ['MobileNetV3']


@register
class MobileNetV3():
27 28 29 30 31 32 33 34 35 36 37 38 39
    """
    MobileNet v3, see https://arxiv.org/abs/1905.02244
    Args:
	scale (float): scaling factor for convolution groups proportion of mobilenet_v3.
        model_name (str): There are two modes, small and large.
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported.
        norm_decay (float): weight decay for normalization layer weights.
        conv_decay (float): weight decay for convolution layer weights.
        with_extra_blocks (bool): if extra blocks should be added.
        extra_block_filters (list): number of filter for each extra block.
    """
    __shared__ = ['norm_type']

G
Guanghua Yu 已提交
40 41 42 43 44
    def __init__(self,
                 scale=1.0,
                 model_name='small',
                 with_extra_blocks=False,
                 conv_decay=0.0,
K
Kaipeng Deng 已提交
45 46
                 norm_type='bn',
                 norm_decay=0.0,
G
Guanghua Yu 已提交
47 48 49 50 51 52 53
                 extra_block_filters=[[256, 512], [128, 256], [128, 256],
                                      [64, 128]]):
        self.scale = scale
        self.model_name = model_name
        self.with_extra_blocks = with_extra_blocks
        self.extra_block_filters = extra_block_filters
        self.conv_decay = conv_decay
K
Kaipeng Deng 已提交
54
        self.norm_decay = norm_decay
G
Guanghua Yu 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        self.inplanes = 16
        self.end_points = []
        self.block_stride = 1
        if model_name == "large":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
        elif model_name == "small":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
        else:
            raise NotImplementedError

    def _conv_bn_layer(self,
                       input,
                       filter_size,
                       num_filters,
                       stride,
                       padding,
                       num_groups=1,
                       if_act=True,
                       act=None,
                       name=None,
                       use_cudnn=True):
        conv_param_attr = ParamAttr(
            name=name + '_weights', regularizer=L2Decay(self.conv_decay))
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=conv_param_attr,
            bias_attr=False)
        bn_name = name + '_bn'
        bn_param_attr = ParamAttr(
K
Kaipeng Deng 已提交
121
            name=bn_name + "_scale", regularizer=L2Decay(self.norm_decay))
G
Guanghua Yu 已提交
122
        bn_bias_attr = ParamAttr(
K
Kaipeng Deng 已提交
123
            name=bn_name + "_offset", regularizer=L2Decay(self.norm_decay))
G
Guanghua Yu 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            if act == 'relu':
                bn = fluid.layers.relu(bn)
            elif act == 'hard_swish':
                bn = self._hard_swish(bn)
            elif act == 'relu6':
                bn = fluid.layers.relu6(bn)
        return bn

    def _hard_swish(self, x):
        return x * fluid.layers.relu6(x + 3) / 6.

    def _se_block(self, input, num_out_filter, ratio=4, name=None):
        num_mid_filter = int(num_out_filter // ratio)
        pool = fluid.layers.pool2d(
            input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
        conv1 = fluid.layers.conv2d(
            input=pool,
            filter_size=1,
            num_filters=num_mid_filter,
            act='relu',
            param_attr=ParamAttr(name=name + '_1_weights'),
            bias_attr=ParamAttr(name=name + '_1_offset'))
        conv2 = fluid.layers.conv2d(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            act='hard_sigmoid',
            param_attr=ParamAttr(name=name + '_2_weights'),
            bias_attr=ParamAttr(name=name + '_2_offset'))

        scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
        return scale

    def _residual_unit(self,
                       input,
                       num_in_filter,
                       num_mid_filter,
                       num_out_filter,
                       stride,
                       filter_size,
                       act=None,
                       use_se=False,
                       name=None):
        input_data = input
        conv0 = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')
        if self.block_stride == 16 and stride == 2:
            self.end_points.append(conv0)
        conv1 = self._conv_bn_layer(
            input=conv0,
            filter_size=filter_size,
            num_filters=num_mid_filter,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            if_act=True,
            act=act,
            num_groups=num_mid_filter,
            use_cudnn=False,
            name=name + '_depthwise')

        if use_se:
            conv1 = self._se_block(
                input=conv1, num_out_filter=num_mid_filter, name=name + '_se')

        conv2 = self._conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear')
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(x=input_data, y=conv2, act=None)

    def _extra_block_dw(self,
                        input,
                        num_filters1,
                        num_filters2,
                        stride,
                        name=None):
        pointwise_conv = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=int(num_filters1),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra1")
        depthwise_conv = self._conv_bn_layer(
            input=pointwise_conv,
            filter_size=3,
            num_filters=int(num_filters2),
            stride=stride,
            padding="SAME",
            num_groups=int(num_filters1),
            act='relu6',
            use_cudnn=False,
            name=name + "_extra2_dw")
        normal_conv = self._conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra2_sep")
        return normal_conv

    def __call__(self, input):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        blocks = []

        #conv1
        conv = self._conv_bn_layer(
            input,
            filter_size=3,
            num_filters=inplanes if scale <= 1.0 else int(inplanes * scale),
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        i = 0
        for layer_cfg in cfg:
            self.block_stride *= layer_cfg[5]
K
Kaipeng Deng 已提交
269 270
            if layer_cfg[5] == 2:
                blocks.append(conv)
G
Guanghua Yu 已提交
271 272 273 274 275 276 277 278 279 280 281 282
            conv = self._residual_unit(
                input=conv,
                num_in_filter=inplanes,
                num_mid_filter=int(scale * layer_cfg[1]),
                num_out_filter=int(scale * layer_cfg[2]),
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))
            inplanes = int(scale * layer_cfg[2])
            i += 1
K
Kaipeng Deng 已提交
283
        blocks.append(conv)
G
Guanghua Yu 已提交
284 285

        if not self.with_extra_blocks:
K
Kaipeng Deng 已提交
286
            return blocks
G
Guanghua Yu 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

        # extra block
        conv_extra = self._conv_bn_layer(
            conv,
            filter_size=1,
            num_filters=int(scale * cfg[-1][1]),
            stride=1,
            padding="SAME",
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv' + str(i + 2))
        self.end_points.append(conv_extra)
        i += 1
        for block_filter in self.extra_block_filters:
            conv_extra = self._extra_block_dw(conv_extra, block_filter[0],
                                              block_filter[1], 2,
                                              'conv' + str(i + 2))
            self.end_points.append(conv_extra)
            i += 1

        return self.end_points