tensor.py 17.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Q
qiaolongfei 已提交
38
    'reverse',
Y
Yu Yang 已提交
39 40 41
]


X
xuwei06 已提交
42
def create_tensor(dtype, name=None, persistable=False):
43
    """
Q
update  
qiaolongfei 已提交
44
    Create an variable, which will hold a LoDTensor with data type dtype.
45 46

    Args:
Q
update  
qiaolongfei 已提交
47
        dtype(string): 'float32'|'int32'|..., the data type of the
48
            created tensor.
Q
update  
qiaolongfei 已提交
49
        name(string): The name of the created tensor, if not set,
50
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
51
        persistable(bool): Set the persistable flag of the create tensor.
52 53 54 55 56 57 58 59 60

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
61
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
62 63
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
64 65


66 67
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
68
                     name=None,
69 70 71 72
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
73 74 75 76 77 78
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

79 80 81 82 83 84 85 86 87 88 89
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
90 91 92 93 94 95
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
111 112
    Create a new variable in the global block(block 0).

113 114
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
115 116 117 118 119 120 121 122 123 124
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
125 126 127

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
128 129 130 131 132 133

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
134
    """
Q
Qiao Longfei 已提交
135 136 137 138
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
139 140
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
141 142 143
    return var


144
def cast(x, dtype):
Y
Yu Yang 已提交
145
    """
Y
Yibing Liu 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
             
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
161 162 163 164 165 166 167 168 169 170 171 172
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


173
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
174
    """
175 176 177
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
178
    and returns that as the output.
179 180 181 182

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
183 184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
185 186 187 188 189 190

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
191 192
        
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
193 194 195 196 197 198 199 200 201 202 203
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


204
def sums(input, out=None):
F
fengjiayi 已提交
205 206
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
207 208 209 210 211
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
212
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
213
                             Default: None
K
kavyasrinet 已提交
214 215

    Returns:
F
fengjiayi 已提交
216
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
217 218

    Examples:
F
fengjiayi 已提交
219
        .. code-block:: python
K
kavyasrinet 已提交
220 221 222 223 224 225

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
226 227
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
228
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
229 230 231 232
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
T
tensor-tang 已提交
233 234 235 236 237
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
238 239 240
    return out


241
def assign(input, output):
242 243 244 245 246 247
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
248
        input(Variable|numpy.ndarray): The source variable
249 250 251 252 253 254 255
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
256

257 258 259 260
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
261
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
262 263
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
264
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
265 266
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
267
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
268
            value_name = "fp32_values"
269
            values = [float(v) for v in input.flat]
270
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
271
            value_name = "int32_values"
272
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
273 274
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
275 276 277
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
278 279 280 281 282 283 284

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
285
                value_name: values
X
xuwei06 已提交
286 287 288 289
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
290 291 292
    return output


Q
QI JUN 已提交
293
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
294
    """
295 296
    **fill_constant**

297 298
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
299

300
    The attribute `stop_gradient` of the created tensor is set to True.
301 302

    Args:
303
        shape(tuple|list|None): Shape of the output tensor.
304
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
305 306
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
307
        force_cpu(True|False): data should be on CPU if set true.
308 309

    Returns:
310
        Variable: The tensor variable storing the output.
311 312 313 314 315

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
316
    """
317

Y
Yu Yang 已提交
318 319 320 321 322 323 324
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
325 326 327 328
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
329
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
330
        })
Y
Yu Yang 已提交
331 332 333 334
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
335
@templatedoc()
Y
Yu Yang 已提交
336 337 338 339 340
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
341
                                  output_dim_idx=0):
342
    """
Y
yuyang18 已提交
343
    ${comment}
344 345 346

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
347 348 349
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

350
    Args:
Y
yuyang18 已提交
351
        input(${input_type}): ${input_comment}.
352

Y
yuyang18 已提交
353
        shape(${shape_type}): ${shape_comment}.
354

Y
yuyang18 已提交
355 356 357
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
358

Y
yuyang18 已提交
359 360 361 362 363
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
364
        ${out_comment}.
365
    """
Y
Yu Yang 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
383 384 385 386
def argmin(x, axis=0):
    """
    **argmin**

387
    This function computes the indices of the min elements
S
sneaxiy 已提交
388 389 390 391 392 393
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
394

S
sneaxiy 已提交
395 396
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
397

S
sneaxiy 已提交
398 399
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
400

S
sneaxiy 已提交
401
          out = fluid.layers.argmin(x=in, axis=0)
402
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

418
    This function computes the indices of the max elements
S
sneaxiy 已提交
419 420 421 422 423 424
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
425

S
sneaxiy 已提交
426 427
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
428

S
sneaxiy 已提交
429 430
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
431

S
sneaxiy 已提交
432
          out = fluid.layers.argmax(x=in, axis=0)
433
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
434 435 436 437 438 439 440 441 442 443 444
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
445
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
446
    """
447 448 449 450 451 452 453 454 455
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
456
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
457 458 459 460 461 462 463 464

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
465 466 467 468
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
469
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
470
    """
471 472 473 474 475 476 477 478
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
479 480 481
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
482 483

    Returns:
W
wanghaoshuang 已提交
484
        Variable: The tensor variable storing the output.
485 486 487 488 489

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
490 491
    """
    return fill_constant(value=0.0, **locals())
492 493


F
fengjiayi 已提交
494 495 496 497 498 499 500 501
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
502 503 504
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


528 529 530 531 532 533 534
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
535 536 537
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
553 554
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
555
        file_path(str): The file path where variables will be saved.
556
        overwrite(bool): Whether or not cover the given file when it has already
557 558
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})