batch_norm_mkldnn_op.cc 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

22 23 24 25 26 27
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
28 29
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
30
using platform::to_void_cast;
31 32 33 34 35 36 37 38 39

namespace {
template <typename T>
struct bn_type_traits {
  using op_type = T;
  using op_desc = typename op_type::desc;
  using op_prim = typename op_type::primitive_desc;
};

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class BatchNormMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  BatchNormMKLDNNHandler(
      std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_pd,
      const platform::MKLDNNDeviceContext &dev_ctx, mkldnn::engine engine,
      const std::string &base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    batch_norm_pd_ = batch_norm_pd;
  }

  std::shared_ptr<memory> AcquireScaleshiftMemoryFromPrimitive(void *ptr) {
    return this->AcquireMemoryFromPrimitive(
        batch_norm_pd_->weights_primitive_desc(), ptr, "@scaleshift_mem_p");
  }

  std::shared_ptr<memory> AcquireMeanMemoryFromPrimitive(void *ptr) {
    return this->AcquireMemoryFromPrimitive(
        batch_norm_pd_->mean_primitive_desc(), ptr, "@mean_mem_p");
  }

  std::shared_ptr<memory> AcquireVarianceMemoryFromPrimitive(void *ptr) {
    return this->AcquireMemoryFromPrimitive(
        batch_norm_pd_->variance_primitive_desc(), ptr, "@variance_mem_p");
  }

K
Krzysztof Binias 已提交
65
  std::shared_ptr<batch_norm_fwd> AcquireTestTrainingBatchNormFwd(
66 67
      std::shared_ptr<memory> src_memory,
      std::shared_ptr<memory> scaleshift_memory,
K
Krzysztof Binias 已提交
68 69
      std::shared_ptr<memory> dst_memory, std::shared_ptr<memory> mean_memory,
      std::shared_ptr<memory> variance_memory, bool is_test) {
70 71 72 73
    auto prim_key = key_ + "@batch_norm_p";
    auto batch_norm_p =
        std::static_pointer_cast<batch_norm_fwd>(dev_ctx_.GetBlob(prim_key));

K
Krzysztof Binias 已提交
74 75
    PADDLE_ENFORCE((batch_norm_p != nullptr) || !is_reusing_,
                   "Fail to find batch norm primitive in device context");
76 77

    if (batch_norm_p == nullptr) {
K
Krzysztof Binias 已提交
78 79 80 81 82 83 84 85 86 87 88
      if (is_test) {
        batch_norm_p = std::make_shared<batch_norm_fwd>(
            *batch_norm_pd_, *src_memory,
            (const mkldnn::primitive::at &)*mean_memory,
            (const mkldnn::primitive::at &)*variance_memory, *scaleshift_memory,
            *dst_memory);
      } else {
        batch_norm_p = std::make_shared<batch_norm_fwd>(
            *batch_norm_pd_, *src_memory, *scaleshift_memory, *dst_memory,
            *mean_memory, *variance_memory);
      }
89 90 91 92 93

      dev_ctx_.SetBlob(prim_key, batch_norm_p);
    } else {
      is_reusing_ = true;
    }
K
Krzysztof Binias 已提交
94

95 96
    return batch_norm_p;
  }
K
Krzysztof Binias 已提交
97

98 99
  static std::string GetHash(const memory::dims &input_dims, float epsilon,
                             unsigned flag, bool is_test, memory::format format,
K
Krzysztof Binias 已提交
100
                             const std::string &suffix = "") {
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    auto dims2str = [](const memory::dims &operand_dims) {
      std::string dstr = "";
      for (size_t i = 0; i < operand_dims.size(); ++i) {
        dstr += std::to_string(operand_dims[i]) + "-";
      }
      return dstr;
    };
    return dims2str(input_dims) + std::to_string(epsilon) +
           std::to_string(flag) + std::to_string(is_test) +
           std::to_string(format) + suffix;
  }

 private:
  std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_pd_;
};

std::shared_ptr<memory> UpdateMemoryData(
    const platform::MKLDNNDeviceContext &dev_ctx, const std::string &key,
    void *new_ptr) {
  auto mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key));
  PADDLE_ENFORCE(
      mem != nullptr,
      (std::string("Fail to find memory in device context [key: ") + key + "]")
          .c_str());
  mem->set_data_handle(new_ptr);
  return mem;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
                     Container *c) {
  auto it = std::begin(*c);

  std::copy(scale_begin, scale_end, std::inserter(*c, it));
  std::copy(
      shift_begin, shift_end,
      std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}

}  // namespace

template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
149
    const bool fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *variance = ctx.Input<Tensor>("Variance");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *batch_mean = ctx.Output<Tensor>("SavedMean");
    auto *batch_variance = ctx.Output<Tensor>("SavedVariance");

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");

167 168 169 170 171 172 173 174 175 176 177 178
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    const T *x_data = x->data<T>();
    const T *mean_data = mean->data<T>();
    const T *variance_data = variance->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *mean_out_data = mean_out->mutable_data<T>(ctx.GetPlace());
    T *variance_out_data = variance_out->mutable_data<T>(ctx.GetPlace());
    T *batch_mean_data = nullptr;
    T *batch_variance_data = nullptr;
179 180

    if (!is_test) {
181 182
      batch_mean_data = batch_mean->mutable_data<T>(ctx.GetPlace());
      batch_variance_data = batch_variance->mutable_data<T>(ctx.GetPlace());
183 184 185 186 187
    }

    auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
                                       : mkldnn::prop_kind::forward_training;

188 189 190 191
    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
    const unsigned int ic = scale_tz[0];
192

193 194 195 196 197 198 199 200
    // MKLDNN requires a single piece of memory for scale and shift/bias data
    const size_t scaleshift_size = 2 * ic;
    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);

    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

201 202
    unsigned flags = mkldnn::use_scale_shift;
    if (is_test) flags |= mkldnn::use_global_stats;
203
    if (fuse_with_relu) flags |= mkldnn::fuse_bn_relu;
204

205
    // create mkldnn memory from input x tensor
206 207
    mkldnn::memory::format input_format =
        platform::MKLDNNFormatForSize(src_tz.size(), x->format());
208

209 210 211 212 213 214 215 216
    // keys for backward pass
    const std::string key = BatchNormMKLDNNHandler::GetHash(
        src_tz, epsilon, flags, is_test, input_format,
        ctx.op().Output("SavedMean"));
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input_format);
217 218

    // create primitive descriptor for batch norm forward
219
    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
220 221 222 223 224
    auto batch_norm_fwd_desc =
        bn_fwd_types::op_desc{propagation, user_src_md, epsilon, flags};
    auto batch_norm_fwd_pd = std::make_shared<batch_norm_fwd::primitive_desc>(
        batch_norm_fwd_desc, mkldnn_engine);
    // Save conv_pd/src_memory/weights_memory for backward pass
225
    dev_ctx.SetBlob(key_batch_norm_fwd_pd, batch_norm_fwd_pd);
226

227 228
    BatchNormMKLDNNHandler handler(batch_norm_fwd_pd, dev_ctx, mkldnn_engine,
                                   key);
229

230 231
    auto src_memory =
        handler.AcquireSrcMemory(user_src_md, to_void_cast(x_data));
232

233
    // crate mkldnn memory for weights(scale/shift)
234 235
    auto scaleshift_memory =
        handler.AcquireScaleshiftMemoryFromPrimitive(scaleshift_data.data());
236

237
    // create mkldnn memory for output y tensor
238 239
    auto dst_memory = handler.AcquireDstMemory(
        batch_norm_fwd_pd->dst_primitive_desc().desc(), y_data);
240

241
    std::shared_ptr<batch_norm_fwd> batch_norm_p;
242 243
    if (is_test) {
      // create mkldnn memory for stats (as input)
244 245 246 247 248 249
      std::shared_ptr<memory> mean_memory =
          handler.AcquireMeanMemoryFromPrimitive(to_void_cast(mean_data));
      std::shared_ptr<memory> variance_memory =
          handler.AcquireVarianceMemoryFromPrimitive(
              to_void_cast(variance_data));

K
Krzysztof Binias 已提交
250 251 252
      batch_norm_p = handler.AcquireTestTrainingBatchNormFwd(
          src_memory, scaleshift_memory, dst_memory, mean_memory,
          variance_memory, true);
253
    } else {
254
      // create mkldnn memory for stats (as output)
255 256 257 258 259
      std::shared_ptr<memory> mean_memory =
          handler.AcquireMeanMemoryFromPrimitive(batch_mean_data);
      std::shared_ptr<memory> variance_memory =
          handler.AcquireVarianceMemoryFromPrimitive(batch_variance_data);

K
Krzysztof Binias 已提交
260
      batch_norm_p = handler.AcquireTestTrainingBatchNormFwd(
261
          src_memory, scaleshift_memory, dst_memory, mean_memory,
K
Krzysztof Binias 已提交
262
          variance_memory, false);
263 264
    }

265 266 267 268 269 270 271
    y->set_layout(DataLayout::kMKLDNN);
    y->set_format(platform::GetMKLDNNFormat(*dst_memory));

    std::vector<mkldnn::primitive> pipeline;
    pipeline.push_back(*batch_norm_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();

272
    if (!is_test) {
273 274 275 276 277 278 279 280 281
      // mkldnn only compute stats for current batch
      // so we need compute momentum stats via Eigen lib
      EigenVectorArrayMap<T> batch_mean_e(batch_mean_data, ic);
      EigenVectorArrayMap<T> batch_variance_e(batch_variance_data, ic);
      ConstEigenVectorArrayMap<T> mean_e(mean_data, ic);
      ConstEigenVectorArrayMap<T> variance_e{variance_data, ic};

      EigenVectorArrayMap<T> running_mean_e(mean_out_data, ic);
      EigenVectorArrayMap<T> running_variance_e(variance_out_data, ic);
282 283

      auto one_minus_momentum = 1. - momentum;
284 285 286
      running_mean_e = mean_e * momentum + batch_mean_e * one_minus_momentum;
      running_variance_e =
          variance_e * momentum + batch_variance_e * one_minus_momentum;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    }
  }
};

template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const float epsilon = ctx.Attr<float>("epsilon");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");

    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input diff_y tensor");

    const T *x_data = x->data<T>();
    const T *diff_y_data = diff_y->data<T>();
    const T *batch_mean_data = batch_mean->data<T>();
    const T *batch_variance_data = batch_variance->data<T>();
    const T *scale_data = scale->data<T>();
    const T *shift_data = shift->data<T>();
    T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
    T *diff_scale_data = diff_scale->mutable_data<T>(ctx.GetPlace());
    T *diff_shift_data = diff_shift->mutable_data<T>(ctx.GetPlace());

    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto diff_src_tz = src_tz;
    auto dst_tz = src_tz;
    auto diff_dst_tz = dst_tz;
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");

    const unsigned int ic = scale_tz[0];

    using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
335

336 337 338 339 340
    mkldnn::memory::format dst_format =
        platform::MKLDNNFormatForSize(src_tz.size(), diff_y->format());

    mkldnn::memory::format input_format =
        platform::MKLDNNFormatForSize(src_tz.size(), x->format());
341

342 343 344 345 346 347 348
    unsigned flags = mkldnn::use_scale_shift;

    // keys from forward pass
    const std::string key = BatchNormMKLDNNHandler::GetHash(
        src_tz, epsilon, flags, false, input_format,
        ctx.op().Input("SavedMean"));
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
349

350 351
    // keys for primitives reuse
    const std::string key_with_hash =
K
Krzysztof Binias 已提交
352 353
        key + BatchNormMKLDNNHandler::GetHash(src_tz, epsilon, flags, false,
                                              input_format);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    const std::string key_batch_norm_bwd_p =
        key_with_hash + "@batch_norm_bwd_p";
    const std::string key_batch_norm_src_mem_p =
        key_with_hash + "@batch_norm_bwd_src_mem_p";
    const std::string key_batch_norm_mean_mem_p =
        key_with_hash + "@batch_norm_bwd_mean_mem_p";
    const std::string key_batch_norm_variance_mem_p =
        key_with_hash + "@batch_norm_bwd_variance_mem_p";
    const std::string key_batch_norm_scaleshift_mem_p =
        key_with_hash + "@batch_norm_bwd_scaleshift_mem_p";
    const std::string key_batch_norm_diff_scaleshift_mem_p =
        key_with_hash + "@batch_norm_bwd_diff_scaleshift_mem_p";
    const std::string key_batch_norm_diff_src_mem_p =
        key_with_hash + "@batch_norm_bwd_diff_src_mem_p";
    const std::string key_batch_norm_diff_dst_mem_p =
        key_with_hash + "@batch_norm_bwd_diff_dst_mem_p";
370

371 372
    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
373 374 375
    auto user_diff_dst_memory = memory(
        {{{diff_dst_tz}, memory::data_type::f32, dst_format}, mkldnn_engine},
        to_void_cast(diff_y_data));
376

377
    // MKLDNN requires a single piece of memory for scale and shift/bias data
378 379 380 381
    const size_t scaleshift_size = 2 * ic;

    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);
382 383
    copy_to_weights(scale_data, scale_data + ic, shift_data, shift_data + ic,
                    &scaleshift_data);
384 385 386

    std::vector<T> diff_scaleshift_data;
    diff_scaleshift_data.reserve(scaleshift_size);
387

388 389 390 391 392
    auto batch_norm_fwd_pd =
        std::static_pointer_cast<batch_norm_fwd::primitive_desc>(
            dev_ctx.GetBlob(key_batch_norm_fwd_pd));
    PADDLE_ENFORCE(batch_norm_fwd_pd != nullptr,
                   "Fail to find batch_norm_fwd_pd in device context");
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    auto batch_norm_bwd_p = std::static_pointer_cast<batch_norm_bwd>(
        dev_ctx.GetBlob(key_batch_norm_bwd_p));

    if (batch_norm_bwd_p == nullptr) {
      auto src_memory = std::shared_ptr<memory>(new memory(
          {{{src_tz}, memory::data_type::f32, input_format}, mkldnn_engine},
          to_void_cast(x_data)));

      // for diff_dst, try to use same format as dst in forward pass
      auto diff_dst_pd = batch_norm_fwd_pd.get()->dst_primitive_desc();
      auto diff_dst_md = diff_dst_pd.desc();

      // create primitive descriptor for batch norm backward
      auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
          mkldnn::prop_kind::backward, diff_dst_md,
          src_memory->get_primitive_desc().desc(), epsilon, flags};
      auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
          batch_norm_bwd_desc, mkldnn_engine, *batch_norm_fwd_pd};

      // reorder user_diff_dst if it's not in preferred format
      auto diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (diff_dst_pd != user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory = std::make_shared<memory>(diff_dst_pd);
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      // create mkldnn memory for input tensors (src/mean/variance)
      auto mean_memory =
          std::make_shared<memory>(batch_norm_bwd_pd.mean_primitive_desc(),
                                   to_void_cast(batch_mean_data));
      auto variance_memory =
          std::make_shared<memory>(batch_norm_bwd_pd.variance_primitive_desc(),
                                   to_void_cast(batch_variance_data));

      // create mkldnn memory for input tensors (scale/shift)
      auto scaleshift_memory = std::make_shared<memory>(
          batch_norm_bwd_pd.weights_primitive_desc(), scaleshift_data.data());

      // create mkldnn memory for output diff weights (combined scale/shift)
      auto diff_scaleshift_memory = std::make_shared<memory>(
          batch_norm_bwd_pd.diff_weights_primitive_desc(),
          diff_scaleshift_data.data());

      // here assume diff_src is in the same format of src
      auto diff_src_memory = std::make_shared<memory>(
          src_memory->get_primitive_desc(), diff_x_data);

      // finally create batch_norm backward primitive
      batch_norm_bwd_p = std::make_shared<batch_norm_bwd>(
          batch_norm_bwd_pd, *src_memory, *mean_memory, *variance_memory,
          *diff_dst_memory, *scaleshift_memory, *diff_src_memory,
          *diff_scaleshift_memory);

      dev_ctx.SetBlob(key_batch_norm_bwd_p, batch_norm_bwd_p);
      dev_ctx.SetBlob(key_batch_norm_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_batch_norm_mean_mem_p, mean_memory);
      dev_ctx.SetBlob(key_batch_norm_variance_mem_p, variance_memory);
      dev_ctx.SetBlob(key_batch_norm_scaleshift_mem_p, scaleshift_memory);
      dev_ctx.SetBlob(key_batch_norm_diff_scaleshift_mem_p,
                      diff_scaleshift_memory);
      dev_ctx.SetBlob(key_batch_norm_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_batch_norm_diff_dst_mem_p, diff_dst_memory);

      // set layout/format of output tensors
      diff_x->set_layout(DataLayout::kMKLDNN);
      diff_x->set_format((memory::format)diff_src_memory->get_primitive_desc()
                             .desc()
                             .data.format);
    } else {
      // primitives already exist
      UpdateMemoryData(dev_ctx, key_batch_norm_src_mem_p, to_void_cast(x_data));
      UpdateMemoryData(dev_ctx, key_batch_norm_mean_mem_p,
                       to_void_cast(batch_mean_data));
      UpdateMemoryData(dev_ctx, key_batch_norm_variance_mem_p,
                       to_void_cast(batch_variance_data));
      UpdateMemoryData(dev_ctx, key_batch_norm_scaleshift_mem_p,
                       scaleshift_data.data());
      UpdateMemoryData(dev_ctx, key_batch_norm_diff_scaleshift_mem_p,
                       diff_scaleshift_data.data());
      auto diff_src_memory = UpdateMemoryData(
          dev_ctx, key_batch_norm_diff_src_mem_p, to_void_cast(diff_x_data));
      auto diff_dst_memory = UpdateMemoryData(
          dev_ctx, key_batch_norm_diff_dst_mem_p, to_void_cast(diff_y_data));

      // reorder user_diff_dst if it's not in preferred format
      if (diff_dst_memory->get_primitive_desc() !=
          user_diff_dst_memory.get_primitive_desc()) {
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      // set layout/format of output tensors
      diff_x->set_layout(DataLayout::kMKLDNN);
      diff_x->set_format((memory::format)diff_src_memory->get_primitive_desc()
                             .desc()
                             .data.format);
    }
492 493 494 495

    // execute optional reorder and batch_norm backward primitive
    std::vector<primitive> pipeline;
    if (is_diff_dst_reordered) pipeline.push_back(reorder_diff_dst);
496
    pipeline.push_back(*batch_norm_bwd_p);
497 498 499 500
    stream(stream::kind::eager).submit(pipeline).wait();

    // copy back diff sacle/shift to output tensors (diff scale/shift)
    diff_scaleshift_data.resize(scaleshift_size);
501
    auto it = std::begin(diff_scaleshift_data);
502
    std::copy(it, std::next(it, ic), diff_scale_data);
503
    std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
504
              diff_shift_data);
505 506 507 508 509 510
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
511
REGISTER_OP_KERNEL(batch_norm, MKLDNN, ::paddle::platform::CPUPlace,
512
                   ops::BatchNormMKLDNNOpKernel<float>);
513
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, ::paddle::platform::CPUPlace,
514
                   ops::BatchNormMKLDNNGradOpKernel<float>);