batch_norm_mkldnn_op.cc 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

22 23 24 25 26 27
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
28 29
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
30
using platform::to_void_cast;
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

namespace {
template <typename T>
struct bn_type_traits {
  using op_type = T;
  using op_desc = typename op_type::desc;
  using op_prim = typename op_type::primitive_desc;
};

template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
                     Container *c) {
  auto it = std::begin(*c);

  std::copy(scale_begin, scale_end, std::inserter(*c, it));
  std::copy(
      shift_begin, shift_end,
      std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}

template <typename Op, typename... Args>
void run_batch_norm_op(Args &&... args) {
  Op batch_norm_op{args...};

  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(batch_norm_op);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

}  // namespace

template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
69
    const bool fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *variance = ctx.Input<Tensor>("Variance");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *batch_mean = ctx.Output<Tensor>("SavedMean");
    auto *batch_variance = ctx.Output<Tensor>("SavedVariance");

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");

87 88 89 90 91 92 93 94 95 96 97 98
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    const T *x_data = x->data<T>();
    const T *mean_data = mean->data<T>();
    const T *variance_data = variance->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *mean_out_data = mean_out->mutable_data<T>(ctx.GetPlace());
    T *variance_out_data = variance_out->mutable_data<T>(ctx.GetPlace());
    T *batch_mean_data = nullptr;
    T *batch_variance_data = nullptr;
99 100

    if (!is_test) {
101 102
      batch_mean_data = batch_mean->mutable_data<T>(ctx.GetPlace());
      batch_variance_data = batch_variance->mutable_data<T>(ctx.GetPlace());
103 104 105 106 107
    }

    auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
                                       : mkldnn::prop_kind::forward_training;

108 109 110 111
    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
    const unsigned int ic = scale_tz[0];
112 113 114

    unsigned flags = mkldnn::use_scale_shift;
    if (is_test) flags |= mkldnn::use_global_stats;
115
    if (fuse_with_relu) flags |= mkldnn::fuse_bn_relu;
116

117
    // create mkldnn memory from input x tensor
118 119 120 121 122 123 124 125 126 127
    mkldnn::memory::format input_format = x->format();
    if (src_tz.size() == 1) {
      input_format = mkldnn::memory::format::x;
    } else if (src_tz.size() == 2) {
      input_format = mkldnn::memory::format::nc;
    }

    auto src_memory = memory(
        {{{src_tz}, memory::data_type::f32, input_format}, mkldnn_engine},
        to_void_cast(x_data));
128 129

    // create primitive descriptor for batch norm forward
130
    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
131 132 133 134 135 136
    auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
        propagation, src_memory.get_primitive_desc().desc(), epsilon, flags};
    std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_fwd_pd =
        std::shared_ptr<batch_norm_fwd::primitive_desc>(
            new batch_norm_fwd::primitive_desc(batch_norm_fwd_desc,
                                               mkldnn_engine));
137

138 139 140 141
    // Save the pd to be used in backward pass
    const std::string key = ctx.op().Output("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    dev_ctx.SetBlob(key_batch_norm_fwd_pd, batch_norm_fwd_pd);
142 143 144 145 146 147 148 149 150

    // MKLDNN requires a single piece of memory for scale and shift/bias data
    const size_t scaleshift_size = 2 * ic;
    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);

    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

151 152 153
    // crate mkldnn memory for weights(scale/shift)
    auto scaleshift_memory = memory(batch_norm_fwd_pd->weights_primitive_desc(),
                                    scaleshift_data.data());
154

155 156
    // create mkldnn memory for output y tensor
    auto dst_memory = memory(batch_norm_fwd_pd->dst_primitive_desc(), y_data);
157

158 159 160 161
    if (is_test) {
      // create mkldnn memory for stats (as input)
      auto mean_memory = memory(batch_norm_fwd_pd->mean_primitive_desc(),
                                to_void_cast(mean_data));
162
      auto variance_memory =
163 164
          memory(batch_norm_fwd_pd->variance_primitive_desc(),
                 to_void_cast(variance_data));
165 166

      run_batch_norm_op<typename bn_fwd_types::op_type>(
167 168
          *batch_norm_fwd_pd, src_memory,
          (const mkldnn::primitive::at &)mean_memory,
169
          (const mkldnn::primitive::at &)variance_memory, scaleshift_memory,
170
          dst_memory);
171
    } else {
172
      // create mkldnn memory for stats (as output)
173
      auto mean_memory =
174 175 176
          memory(batch_norm_fwd_pd->mean_primitive_desc(), batch_mean_data);
      auto variance_memory = memory(
          batch_norm_fwd_pd->variance_primitive_desc(), batch_variance_data);
177

178 179
      run_batch_norm_op<bn_fwd_types::op_type>(*batch_norm_fwd_pd, src_memory,
                                               scaleshift_memory, dst_memory,
180 181 182 183
                                               mean_memory, variance_memory);
    }

    if (!is_test) {
184 185 186 187 188 189 190 191 192
      // mkldnn only compute stats for current batch
      // so we need compute momentum stats via Eigen lib
      EigenVectorArrayMap<T> batch_mean_e(batch_mean_data, ic);
      EigenVectorArrayMap<T> batch_variance_e(batch_variance_data, ic);
      ConstEigenVectorArrayMap<T> mean_e(mean_data, ic);
      ConstEigenVectorArrayMap<T> variance_e{variance_data, ic};

      EigenVectorArrayMap<T> running_mean_e(mean_out_data, ic);
      EigenVectorArrayMap<T> running_variance_e(variance_out_data, ic);
193 194

      auto one_minus_momentum = 1. - momentum;
195 196 197
      running_mean_e = mean_e * momentum + batch_mean_e * one_minus_momentum;
      running_variance_e =
          variance_e * momentum + batch_variance_e * one_minus_momentum;
198
    }
199 200 201 202

    y->set_layout(DataLayout::kMKLDNN);
    y->set_format(
        (memory::format)dst_memory.get_primitive_desc().desc().data.format);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  }
};

template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const float epsilon = ctx.Attr<float>("epsilon");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");

    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input diff_y tensor");

    const T *x_data = x->data<T>();
    const T *diff_y_data = diff_y->data<T>();
    const T *batch_mean_data = batch_mean->data<T>();
    const T *batch_variance_data = batch_variance->data<T>();
    const T *scale_data = scale->data<T>();
    const T *shift_data = shift->data<T>();
    T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
    T *diff_scale_data = diff_scale->mutable_data<T>(ctx.GetPlace());
    T *diff_shift_data = diff_shift->mutable_data<T>(ctx.GetPlace());

    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto diff_src_tz = src_tz;
    auto dst_tz = src_tz;
    auto diff_dst_tz = dst_tz;
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");

    const unsigned int ic = scale_tz[0];

    // Retrieve bn_fwd_pd from device context
    const std::string key = ctx.op().Input("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    auto batch_norm_fwd_pd =
        std::static_pointer_cast<batch_norm_fwd::primitive_desc>(
            dev_ctx.GetBlob(key_batch_norm_fwd_pd));
    PADDLE_ENFORCE(batch_norm_fwd_pd != nullptr,
                   "Fail to find batch_norm_fwd_pd in device context");
257

258
    using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
259

260
    // create mkldnn memory from input diff_y tensor
261 262 263 264 265 266 267 268 269 270

    mkldnn::memory::format dst_format = x->format();
    if (diff_dst_tz.size() == 1) {
      dst_format = mkldnn::memory::format::x;
    } else if (diff_dst_tz.size() == 2) {
      dst_format = mkldnn::memory::format::nc;
    }
    auto user_diff_dst_memory = memory(
        {{{diff_dst_tz}, memory::data_type::f32, dst_format}, mkldnn_engine},
        to_void_cast(diff_y_data));
271

272
    // create mkldnn memory from input x tensor
273 274 275 276 277 278 279 280 281 282
    mkldnn::memory::format input_format = x->format();
    if (src_tz.size() == 1) {
      input_format = mkldnn::memory::format::x;
    } else if (src_tz.size() == 2) {
      input_format = mkldnn::memory::format::nc;
    }

    auto src_memory = memory(
        {{{src_tz}, memory::data_type::f32, input_format}, mkldnn_engine},
        to_void_cast(x_data));
283

284 285 286
    // for diff_dst, try to use same format as dst in forward pass
    auto diff_dst_pd = batch_norm_fwd_pd.get()->dst_primitive_desc();
    auto diff_dst_md = diff_dst_pd.desc();
287

288 289
    // create primitive descriptor for batch norm backward
    unsigned flags = mkldnn::use_scale_shift;
290
    auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
291 292
        mkldnn::prop_kind::backward, diff_dst_md,
        src_memory.get_primitive_desc().desc(), epsilon, flags};
293
    auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
294 295 296 297 298 299 300 301 302 303 304
        batch_norm_bwd_desc, mkldnn_engine, *batch_norm_fwd_pd};

    // reorder user_diff_dst if it's not in preferred format
    auto diff_dst_memory = user_diff_dst_memory;
    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
    if (diff_dst_pd != user_diff_dst_memory.get_primitive_desc()) {
      diff_dst_memory = memory(diff_dst_pd);
      reorder_diff_dst = reorder(user_diff_dst_memory, diff_dst_memory);
      is_diff_dst_reordered = true;
    }
305

306 307 308 309 310
    // create mkldnn memory for input tensors (src/mean/variance)
    auto mean_memory = memory(batch_norm_bwd_pd.mean_primitive_desc(),
                              to_void_cast(batch_mean_data));
    auto variance_memory = memory(batch_norm_bwd_pd.variance_primitive_desc(),
                                  to_void_cast(batch_variance_data));
311

312
    // MKLDNN requires a single piece of memory for scale and shift/bias data
313 314 315 316
    const size_t scaleshift_size = 2 * ic;

    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);
317 318
    copy_to_weights(scale_data, scale_data + ic, shift_data, shift_data + ic,
                    &scaleshift_data);
319

320 321 322
    // create mkldnn memory for input tensors (scale/shift)
    auto scaleshift_memory = memory(batch_norm_bwd_pd.weights_primitive_desc(),
                                    scaleshift_data.data());
323

324
    // create mkldnn memory for output diff weights (combined scale/shift)
325 326 327
    std::vector<T> diff_scaleshift_data;
    diff_scaleshift_data.reserve(scaleshift_size);
    auto diff_scaleshift_memory =
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        memory(batch_norm_bwd_pd.diff_weights_primitive_desc(),
               diff_scaleshift_data.data());

    // here assume diff_src is in the same format of src
    auto diff_src_memory = memory(src_memory.get_primitive_desc(), diff_x_data);

    // finally create batch_norm backward primitive
    auto batch_norm_bwd_prim =
        batch_norm_bwd(batch_norm_bwd_pd, src_memory, mean_memory,
                       variance_memory, diff_dst_memory, scaleshift_memory,
                       diff_src_memory, diff_scaleshift_memory);

    // execute optional reorder and batch_norm backward primitive
    std::vector<primitive> pipeline;
    if (is_diff_dst_reordered) pipeline.push_back(reorder_diff_dst);
    pipeline.push_back(batch_norm_bwd_prim);
    stream(stream::kind::eager).submit(pipeline).wait();

    // copy back diff sacle/shift to output tensors (diff scale/shift)
    diff_scaleshift_data.resize(scaleshift_size);
348
    auto it = std::begin(diff_scaleshift_data);
349
    std::copy(it, std::next(it, ic), diff_scale_data);
350
    std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
351 352 353 354 355 356 357
              diff_shift_data);

    // set layout/format of output tensors
    diff_x->set_layout(DataLayout::kMKLDNN);
    diff_x->set_format((memory::format)diff_src_memory.get_primitive_desc()
                           .desc()
                           .data.format);
358 359 360 361 362 363
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
364
REGISTER_OP_KERNEL(batch_norm, MKLDNN, ::paddle::platform::CPUPlace,
365
                   ops::BatchNormMKLDNNOpKernel<float>);
366
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, ::paddle::platform::CPUPlace,
367
                   ops::BatchNormMKLDNNGradOpKernel<float>);