memory.c 108.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
H
Hugh Dickins 已提交
48
#include <linux/ksm.h>
L
Linus Torvalds 已提交
49
#include <linux/rmap.h>
50
#include <linux/export.h>
51
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
52
#include <linux/init.h>
53
#include <linux/pfn_t.h>
P
Peter Zijlstra 已提交
54
#include <linux/writeback.h>
55
#include <linux/memcontrol.h>
A
Andrea Arcangeli 已提交
56
#include <linux/mmu_notifier.h>
57 58 59
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
60
#include <linux/gfp.h>
61
#include <linux/migrate.h>
A
Andy Shevchenko 已提交
62
#include <linux/string.h>
63
#include <linux/dma-debug.h>
64
#include <linux/debugfs.h>
65
#include <linux/userfaultfd_k.h>
L
Linus Torvalds 已提交
66

A
Alexey Dobriyan 已提交
67
#include <asm/io.h>
68
#include <asm/mmu_context.h>
L
Linus Torvalds 已提交
69 70 71 72 73 74
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

75 76
#include "internal.h"

77 78
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 80
#endif

A
Andy Whitcroft 已提交
81
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;

EXPORT_SYMBOL(high_memory);

101 102 103 104 105 106 107 108 109 110 111 112
/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif
113 114 115 116

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
117
	return 1;
118 119 120
}
__setup("norandmaps", disable_randmaps);

H
Hugh Dickins 已提交
121
unsigned long zero_pfn __read_mostly;
H
Hugh Dickins 已提交
122
unsigned long highest_memmap_pfn __read_mostly;
H
Hugh Dickins 已提交
123

124 125
EXPORT_SYMBOL(zero_pfn);

H
Hugh Dickins 已提交
126 127 128 129 130 131 132 133 134
/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);
135

K
KAMEZAWA Hiroyuki 已提交
136

137 138
#if defined(SPLIT_RSS_COUNTING)

139
void sync_mm_rss(struct mm_struct *mm)
140 141 142 143
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
144 145 146
		if (current->rss_stat.count[i]) {
			add_mm_counter(mm, i, current->rss_stat.count[i]);
			current->rss_stat.count[i] = 0;
147 148
		}
	}
149
	current->rss_stat.events = 0;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171
		sync_mm_rss(task->mm);
172
}
173
#else /* SPLIT_RSS_COUNTING */
174 175 176 177 178 179 180 181

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

182 183 184 185
#endif /* SPLIT_RSS_COUNTING */

#ifdef HAVE_GENERIC_MMU_GATHER

186
static bool tlb_next_batch(struct mmu_gather *tlb)
187 188 189 190 191 192
{
	struct mmu_gather_batch *batch;

	batch = tlb->active;
	if (batch->next) {
		tlb->active = batch->next;
193
		return true;
194 195
	}

196
	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197
		return false;
198

199 200
	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
	if (!batch)
201
		return false;
202

203
	tlb->batch_count++;
204 205 206 207 208 209 210
	batch->next = NULL;
	batch->nr   = 0;
	batch->max  = MAX_GATHER_BATCH;

	tlb->active->next = batch;
	tlb->active = batch;

211
	return true;
212 213 214 215 216 217 218
}

/* tlb_gather_mmu
 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 *	users and we're going to destroy the full address space (exit/execve).
 */
219
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 221 222
{
	tlb->mm = mm;

223 224
	/* Is it from 0 to ~0? */
	tlb->fullmm     = !(start | (end+1));
225
	tlb->need_flush_all = 0;
226 227 228 229
	tlb->local.next = NULL;
	tlb->local.nr   = 0;
	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
	tlb->active     = &tlb->local;
230
	tlb->batch_count = 0;
231 232 233 234

#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb->batch = NULL;
#endif
235 236

	__tlb_reset_range(tlb);
237 238
}

239
static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240
{
241 242 243
	if (!tlb->end)
		return;

244
	tlb_flush(tlb);
245
	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 247
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb_table_flush(tlb);
248
#endif
249
	__tlb_reset_range(tlb);
250 251 252 253 254
}

static void tlb_flush_mmu_free(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;
255

256
	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 258 259 260 261 262
		free_pages_and_swap_cache(batch->pages, batch->nr);
		batch->nr = 0;
	}
	tlb->active = &tlb->local;
}

263 264 265 266 267 268
void tlb_flush_mmu(struct mmu_gather *tlb)
{
	tlb_flush_mmu_tlbonly(tlb);
	tlb_flush_mmu_free(tlb);
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/* tlb_finish_mmu
 *	Called at the end of the shootdown operation to free up any resources
 *	that were required.
 */
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	struct mmu_gather_batch *batch, *next;

	tlb_flush_mmu(tlb);

	/* keep the page table cache within bounds */
	check_pgt_cache();

	for (batch = tlb->local.next; batch; batch = next) {
		next = batch->next;
		free_pages((unsigned long)batch, 0);
	}
	tlb->local.next = NULL;
}

/* __tlb_remove_page
 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 *	handling the additional races in SMP caused by other CPUs caching valid
 *	mappings in their TLBs. Returns the number of free page slots left.
 *	When out of page slots we must call tlb_flush_mmu().
 */
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
	struct mmu_gather_batch *batch;

299
	VM_BUG_ON(!tlb->end);
300 301 302 303 304 305

	batch = tlb->active;
	batch->pages[batch->nr++] = page;
	if (batch->nr == batch->max) {
		if (!tlb_next_batch(tlb))
			return 0;
306
		batch = tlb->active;
307
	}
308
	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309 310 311 312 313 314

	return batch->max - batch->nr;
}

#endif /* HAVE_GENERIC_MMU_GATHER */

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#ifdef CONFIG_HAVE_RCU_TABLE_FREE

/*
 * See the comment near struct mmu_table_batch.
 */

static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely on
	 * IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

	/*
	 * When there's less then two users of this mm there cannot be a
	 * concurrent page-table walk.
	 */
	if (atomic_read(&tlb->mm->mm_users) < 2) {
		__tlb_remove_table(table);
		return;
	}

	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
		tlb_table_flush(tlb);
}

388
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389

L
Linus Torvalds 已提交
390 391 392 393
/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
394 395
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
L
Linus Torvalds 已提交
396
{
397
	pgtable_t token = pmd_pgtable(*pmd);
398
	pmd_clear(pmd);
399
	pte_free_tlb(tlb, token, addr);
400
	atomic_long_dec(&tlb->mm->nr_ptes);
L
Linus Torvalds 已提交
401 402
}

403 404 405
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
406 407 408
{
	pmd_t *pmd;
	unsigned long next;
409
	unsigned long start;
L
Linus Torvalds 已提交
410

411
	start = addr;
L
Linus Torvalds 已提交
412 413 414 415 416
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
417
		free_pte_range(tlb, pmd, addr);
L
Linus Torvalds 已提交
418 419
	} while (pmd++, addr = next, addr != end);

420 421 422 423 424 425 426
	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
427
	}
428 429 430 431 432
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
433
	pmd_free_tlb(tlb, pmd, start);
434
	mm_dec_nr_pmds(tlb->mm);
L
Linus Torvalds 已提交
435 436
}

437 438 439
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
440 441 442
{
	pud_t *pud;
	unsigned long next;
443
	unsigned long start;
L
Linus Torvalds 已提交
444

445
	start = addr;
L
Linus Torvalds 已提交
446 447 448 449 450
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
451
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
452 453
	} while (pud++, addr = next, addr != end);

454 455 456 457 458 459 460
	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
461
	}
462 463 464 465 466
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
467
	pud_free_tlb(tlb, pud, start);
L
Linus Torvalds 已提交
468 469 470
}

/*
471
 * This function frees user-level page tables of a process.
L
Linus Torvalds 已提交
472
 */
473
void free_pgd_range(struct mmu_gather *tlb,
474 475
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
476 477 478
{
	pgd_t *pgd;
	unsigned long next;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
L
Linus Torvalds 已提交
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

522
	pgd = pgd_offset(tlb->mm, addr);
L
Linus Torvalds 已提交
523 524 525 526
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
527
		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
528
	} while (pgd++, addr = next, addr != end);
529 530
}

531
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532
		unsigned long floor, unsigned long ceiling)
533 534 535 536 537
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

538
		/*
N
npiggin@suse.de 已提交
539 540
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
541
		 */
542
		unlink_anon_vmas(vma);
543 544
		unlink_file_vma(vma);

545
		if (is_vm_hugetlb_page(vma)) {
546
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547
				floor, next? next->vm_start: ceiling);
548 549 550 551 552
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553
			       && !is_vm_hugetlb_page(next)) {
554 555
				vma = next;
				next = vma->vm_next;
556
				unlink_anon_vmas(vma);
557
				unlink_file_vma(vma);
558 559 560 561
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
562 563
		vma = next;
	}
L
Linus Torvalds 已提交
564 565
}

566
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
567
{
568
	spinlock_t *ptl;
569
	pgtable_t new = pte_alloc_one(mm, address);
570 571 572
	if (!new)
		return -ENOMEM;

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

588
	ptl = pmd_lock(mm, pmd);
589
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590
		atomic_long_inc(&mm->nr_ptes);
L
Linus Torvalds 已提交
591
		pmd_populate(mm, pmd, new);
592
		new = NULL;
593
	}
594
	spin_unlock(ptl);
595 596
	if (new)
		pte_free(mm, new);
597
	return 0;
L
Linus Torvalds 已提交
598 599
}

600
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
601
{
602 603 604 605
	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
	if (!new)
		return -ENOMEM;

606 607
	smp_wmb(); /* See comment in __pte_alloc */

608
	spin_lock(&init_mm.page_table_lock);
609
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
610
		pmd_populate_kernel(&init_mm, pmd, new);
611
		new = NULL;
612
	}
613
	spin_unlock(&init_mm.page_table_lock);
614 615
	if (new)
		pte_free_kernel(&init_mm, new);
616
	return 0;
L
Linus Torvalds 已提交
617 618
}

K
KAMEZAWA Hiroyuki 已提交
619 620 621 622 623 624
static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625
{
K
KAMEZAWA Hiroyuki 已提交
626 627
	int i;

628
	if (current->mm == mm)
629
		sync_mm_rss(mm);
K
KAMEZAWA Hiroyuki 已提交
630 631 632
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
633 634
}

N
Nick Piggin 已提交
635
/*
636 637 638
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
N
Nick Piggin 已提交
639 640 641
 *
 * The calling function must still handle the error.
 */
642 643
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
N
Nick Piggin 已提交
644
{
645 646 647 648 649
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
650 651 652 653 654 655 656 657 658 659 660 661 662 663
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
664 665
			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
				 nr_unshown);
666 667 668 669 670 671
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;
672 673 674 675

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

676 677 678
	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
		 current->comm,
		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679
	if (page)
680
		dump_page(page, "bad pte");
681 682
	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683 684 685
	/*
	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
	 */
686 687 688 689 690
	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
		 vma->vm_file,
		 vma->vm_ops ? vma->vm_ops->fault : NULL,
		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
		 mapping ? mapping->a_ops->readpage : NULL);
N
Nick Piggin 已提交
691
	dump_stack();
692
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
N
Nick Piggin 已提交
693 694
}

H
Hugh Dickins 已提交
695
/*
N
Nick Piggin 已提交
696
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
697
 *
N
Nick Piggin 已提交
698 699 700
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
J
Jared Hulbert 已提交
701
 *
N
Nick Piggin 已提交
702 703 704 705 706 707 708 709
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
710
 *
J
Jared Hulbert 已提交
711 712
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
N
Nick Piggin 已提交
713 714
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
715 716 717
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
N
Nick Piggin 已提交
718 719 720 721 722 723
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
J
Jared Hulbert 已提交
724 725
 *
 *
N
Nick Piggin 已提交
726
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
J
Jared Hulbert 已提交
727 728 729 730 731 732 733 734 735
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
H
Hugh Dickins 已提交
736
 */
N
Nick Piggin 已提交
737 738 739 740 741 742 743
#ifdef __HAVE_ARCH_PTE_SPECIAL
# define HAVE_PTE_SPECIAL 1
#else
# define HAVE_PTE_SPECIAL 0
#endif
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
				pte_t pte)
H
Hugh Dickins 已提交
744
{
745
	unsigned long pfn = pte_pfn(pte);
N
Nick Piggin 已提交
746 747

	if (HAVE_PTE_SPECIAL) {
748
		if (likely(!pte_special(pte)))
749
			goto check_pfn;
750 751
		if (vma->vm_ops && vma->vm_ops->find_special_page)
			return vma->vm_ops->find_special_page(vma, addr);
H
Hugh Dickins 已提交
752 753
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
H
Hugh Dickins 已提交
754
		if (!is_zero_pfn(pfn))
755
			print_bad_pte(vma, addr, pte, NULL);
N
Nick Piggin 已提交
756 757 758 759 760
		return NULL;
	}

	/* !HAVE_PTE_SPECIAL case follows: */

J
Jared Hulbert 已提交
761 762 763 764 765 766
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
N
Nick Piggin 已提交
767 768
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
J
Jared Hulbert 已提交
769 770 771 772 773
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
774 775
	}

776 777
	if (is_zero_pfn(pfn))
		return NULL;
778 779 780 781 782
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}
783 784

	/*
N
Nick Piggin 已提交
785 786
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
787
	 */
J
Jared Hulbert 已提交
788
out:
789
	return pfn_to_page(pfn);
H
Hugh Dickins 已提交
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
				pmd_t pmd)
{
	unsigned long pfn = pmd_pfn(pmd);

	/*
	 * There is no pmd_special() but there may be special pmds, e.g.
	 * in a direct-access (dax) mapping, so let's just replicate the
	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
	 */
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
	}

	if (is_zero_pfn(pfn))
		return NULL;
	if (unlikely(pfn > highest_memmap_pfn))
		return NULL;

	/*
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
	 */
out:
	return pfn_to_page(pfn);
}
#endif

L
Linus Torvalds 已提交
832 833 834 835 836 837
/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

H
Hugh Dickins 已提交
838
static inline unsigned long
L
Linus Torvalds 已提交
839
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
N
Nick Piggin 已提交
840
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
H
Hugh Dickins 已提交
841
		unsigned long addr, int *rss)
L
Linus Torvalds 已提交
842
{
N
Nick Piggin 已提交
843
	unsigned long vm_flags = vma->vm_flags;
L
Linus Torvalds 已提交
844 845 846 847 848
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (likely(!non_swap_entry(entry))) {
			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
							&src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			rss[MM_SWAPENTS]++;
		} else if (is_migration_entry(entry)) {
			page = migration_entry_to_page(entry);

867
			rss[mm_counter(page)]++;
868 869 870 871 872 873 874 875 876 877 878 879

			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				if (pte_swp_soft_dirty(*src_pte))
					pte = pte_swp_mksoft_dirty(pte);
				set_pte_at(src_mm, addr, src_pte, pte);
880
			}
L
Linus Torvalds 已提交
881
		}
882
		goto out_set_pte;
L
Linus Torvalds 已提交
883 884 885 886 887 888
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
889
	if (is_cow_mapping(vm_flags)) {
L
Linus Torvalds 已提交
890
		ptep_set_wrprotect(src_mm, addr, src_pte);
891
		pte = pte_wrprotect(pte);
L
Linus Torvalds 已提交
892 893 894 895 896 897 898 899 900
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
901 902 903 904

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
905
		page_dup_rmap(page, false);
906
		rss[mm_counter(page)]++;
907
	}
908 909 910

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
H
Hugh Dickins 已提交
911
	return 0;
L
Linus Torvalds 已提交
912 913
}

914
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 916
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
917
{
918
	pte_t *orig_src_pte, *orig_dst_pte;
L
Linus Torvalds 已提交
919
	pte_t *src_pte, *dst_pte;
H
Hugh Dickins 已提交
920
	spinlock_t *src_ptl, *dst_ptl;
921
	int progress = 0;
K
KAMEZAWA Hiroyuki 已提交
922
	int rss[NR_MM_COUNTERS];
H
Hugh Dickins 已提交
923
	swp_entry_t entry = (swp_entry_t){0};
L
Linus Torvalds 已提交
924 925

again:
K
KAMEZAWA Hiroyuki 已提交
926 927
	init_rss_vec(rss);

H
Hugh Dickins 已提交
928
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
L
Linus Torvalds 已提交
929 930
	if (!dst_pte)
		return -ENOMEM;
P
Peter Zijlstra 已提交
931
	src_pte = pte_offset_map(src_pmd, addr);
H
Hugh Dickins 已提交
932
	src_ptl = pte_lockptr(src_mm, src_pmd);
I
Ingo Molnar 已提交
933
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 935
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
936
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
937 938 939 940 941 942

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
943 944 945
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
N
Nick Piggin 已提交
946
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947 948
				break;
		}
L
Linus Torvalds 已提交
949 950 951 952
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
H
Hugh Dickins 已提交
953 954 955 956
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
L
Linus Torvalds 已提交
957 958 959
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

960
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
961
	spin_unlock(src_ptl);
P
Peter Zijlstra 已提交
962
	pte_unmap(orig_src_pte);
K
KAMEZAWA Hiroyuki 已提交
963
	add_mm_rss_vec(dst_mm, rss);
964
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
H
Hugh Dickins 已提交
965
	cond_resched();
H
Hugh Dickins 已提交
966 967 968 969 970 971

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
L
Linus Torvalds 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
990
		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
991
			int err;
992
			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993 994 995 996 997 998 999 1000
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
L
Linus Torvalds 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
1039 1040 1041
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	bool is_cow;
A
Andrea Arcangeli 已提交
1042
	int ret;
L
Linus Torvalds 已提交
1043

1044 1045 1046 1047 1048 1049
	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
1050 1051 1052
	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
			!vma->anon_vma)
		return 0;
1053

L
Linus Torvalds 已提交
1054 1055 1056
	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

1057
	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058 1059 1060 1061
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
1062
		ret = track_pfn_copy(vma);
1063 1064 1065 1066
		if (ret)
			return ret;
	}

A
Andrea Arcangeli 已提交
1067 1068 1069 1070 1071 1072
	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
1073 1074 1075 1076 1077 1078
	is_cow = is_cow_mapping(vma->vm_flags);
	mmun_start = addr;
	mmun_end   = end;
	if (is_cow)
		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
						    mmun_end);
A
Andrea Arcangeli 已提交
1079 1080

	ret = 0;
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085 1086
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
A
Andrea Arcangeli 已提交
1087 1088 1089 1090 1091
		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
L
Linus Torvalds 已提交
1092
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
A
Andrea Arcangeli 已提交
1093

1094 1095
	if (is_cow)
		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1096
	return ret;
L
Linus Torvalds 已提交
1097 1098
}

1099
static unsigned long zap_pte_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1100
				struct vm_area_struct *vma, pmd_t *pmd,
L
Linus Torvalds 已提交
1101
				unsigned long addr, unsigned long end,
1102
				struct zap_details *details)
L
Linus Torvalds 已提交
1103
{
N
Nick Piggin 已提交
1104
	struct mm_struct *mm = tlb->mm;
P
Peter Zijlstra 已提交
1105
	int force_flush = 0;
K
KAMEZAWA Hiroyuki 已提交
1106
	int rss[NR_MM_COUNTERS];
1107
	spinlock_t *ptl;
1108
	pte_t *start_pte;
1109
	pte_t *pte;
1110
	swp_entry_t entry;
K
KAMEZAWA Hiroyuki 已提交
1111

P
Peter Zijlstra 已提交
1112
again:
1113
	init_rss_vec(rss);
1114 1115
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
1116
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1117 1118
	do {
		pte_t ptent = *pte;
1119
		if (pte_none(ptent)) {
L
Linus Torvalds 已提交
1120
			continue;
1121
		}
1122

L
Linus Torvalds 已提交
1123
		if (pte_present(ptent)) {
H
Hugh Dickins 已提交
1124
			struct page *page;
1125

1126
			page = vm_normal_page(vma, addr, ptent);
L
Linus Torvalds 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
			}
N
Nick Piggin 已提交
1137
			ptent = ptep_get_and_clear_full(mm, addr, pte,
1138
							tlb->fullmm);
L
Linus Torvalds 已提交
1139 1140 1141
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
1142 1143

			if (!PageAnon(page)) {
1144
				if (pte_dirty(ptent)) {
M
Michal Hocko 已提交
1145 1146 1147 1148 1149 1150
					/*
					 * oom_reaper cannot tear down dirty
					 * pages
					 */
					if (unlikely(details && details->ignore_dirty))
						continue;
1151
					force_flush = 1;
1152
					set_page_dirty(page);
1153
				}
1154
				if (pte_young(ptent) &&
1155
				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1156
					mark_page_accessed(page);
1157
			}
1158
			rss[mm_counter(page)]--;
1159
			page_remove_rmap(page, false);
1160 1161
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
1162 1163
			if (unlikely(!__tlb_remove_page(tlb, page))) {
				force_flush = 1;
1164
				addr += PAGE_SIZE;
P
Peter Zijlstra 已提交
1165
				break;
1166
			}
L
Linus Torvalds 已提交
1167 1168
			continue;
		}
M
Michal Hocko 已提交
1169 1170
		/* only check swap_entries if explicitly asked for in details */
		if (unlikely(details && !details->check_swap_entries))
L
Linus Torvalds 已提交
1171
			continue;
K
KAMEZAWA Hiroyuki 已提交
1172

1173 1174 1175 1176 1177
		entry = pte_to_swp_entry(ptent);
		if (!non_swap_entry(entry))
			rss[MM_SWAPENTS]--;
		else if (is_migration_entry(entry)) {
			struct page *page;
1178

1179
			page = migration_entry_to_page(entry);
1180
			rss[mm_counter(page)]--;
K
KAMEZAWA Hiroyuki 已提交
1181
		}
1182 1183
		if (unlikely(!free_swap_and_cache(entry)))
			print_bad_pte(vma, addr, ptent, NULL);
1184
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185
	} while (pte++, addr += PAGE_SIZE, addr != end);
1186

K
KAMEZAWA Hiroyuki 已提交
1187
	add_mm_rss_vec(mm, rss);
1188
	arch_leave_lazy_mmu_mode();
1189

1190
	/* Do the actual TLB flush before dropping ptl */
1191
	if (force_flush)
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		tlb_flush_mmu_tlbonly(tlb);
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * If we forced a TLB flush (either due to running out of
	 * batch buffers or because we needed to flush dirty TLB
	 * entries before releasing the ptl), free the batched
	 * memory too. Restart if we didn't do everything.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu_free(tlb);
1204 1205

		if (addr != end)
P
Peter Zijlstra 已提交
1206 1207 1208
			goto again;
	}

1209
	return addr;
L
Linus Torvalds 已提交
1210 1211
}

1212
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1213
				struct vm_area_struct *vma, pud_t *pud,
L
Linus Torvalds 已提交
1214
				unsigned long addr, unsigned long end,
1215
				struct zap_details *details)
L
Linus Torvalds 已提交
1216 1217 1218 1219 1220 1221 1222
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
1223
		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224
			if (next - addr != HPAGE_PMD_SIZE) {
1225 1226
				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1227
				split_huge_pmd(vma, pmd, addr);
S
Shaohua Li 已提交
1228
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1229
				goto next;
1230 1231
			/* fall through */
		}
1232 1233 1234 1235 1236 1237 1238 1239 1240
		/*
		 * Here there can be other concurrent MADV_DONTNEED or
		 * trans huge page faults running, and if the pmd is
		 * none or trans huge it can change under us. This is
		 * because MADV_DONTNEED holds the mmap_sem in read
		 * mode.
		 */
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto next;
1241
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1242
next:
1243 1244
		cond_resched();
	} while (pmd++, addr = next, addr != end);
1245 1246

	return addr;
L
Linus Torvalds 已提交
1247 1248
}

1249
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1250
				struct vm_area_struct *vma, pgd_t *pgd,
L
Linus Torvalds 已提交
1251
				unsigned long addr, unsigned long end,
1252
				struct zap_details *details)
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257 1258 1259
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
1260
		if (pud_none_or_clear_bad(pud))
L
Linus Torvalds 已提交
1261
			continue;
1262 1263
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
	} while (pud++, addr = next, addr != end);
1264 1265

	return addr;
L
Linus Torvalds 已提交
1266 1267
}

M
Michal Hocko 已提交
1268
void unmap_page_range(struct mmu_gather *tlb,
A
Al Viro 已提交
1269 1270 1271
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
L
Linus Torvalds 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
1281
		if (pgd_none_or_clear_bad(pgd))
L
Linus Torvalds 已提交
1282
			continue;
1283 1284
		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
1285 1286
	tlb_end_vma(tlb, vma);
}
1287

1288 1289 1290

static void unmap_single_vma(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
1291
		unsigned long end_addr,
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		struct zap_details *details)
{
	unsigned long start = max(vma->vm_start, start_addr);
	unsigned long end;

	if (start >= vma->vm_end)
		return;
	end = min(vma->vm_end, end_addr);
	if (end <= vma->vm_start)
		return;

1303 1304 1305
	if (vma->vm_file)
		uprobe_munmap(vma, start, end);

1306
	if (unlikely(vma->vm_flags & VM_PFNMAP))
1307
		untrack_pfn(vma, 0, 0);
1308 1309 1310 1311 1312 1313 1314

	if (start != end) {
		if (unlikely(is_vm_hugetlb_page(vma))) {
			/*
			 * It is undesirable to test vma->vm_file as it
			 * should be non-null for valid hugetlb area.
			 * However, vm_file will be NULL in the error
1315
			 * cleanup path of mmap_region. When
1316
			 * hugetlbfs ->mmap method fails,
1317
			 * mmap_region() nullifies vma->vm_file
1318 1319 1320 1321
			 * before calling this function to clean up.
			 * Since no pte has actually been setup, it is
			 * safe to do nothing in this case.
			 */
1322
			if (vma->vm_file) {
1323
				i_mmap_lock_write(vma->vm_file->f_mapping);
1324
				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1325
				i_mmap_unlock_write(vma->vm_file->f_mapping);
1326
			}
1327 1328 1329
		} else
			unmap_page_range(tlb, vma, start, end, details);
	}
L
Linus Torvalds 已提交
1330 1331 1332 1333
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
1334
 * @tlb: address of the caller's struct mmu_gather
L
Linus Torvalds 已提交
1335 1336 1337 1338
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 *
1339
 * Unmap all pages in the vma list.
L
Linus Torvalds 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
A
Al Viro 已提交
1350
void unmap_vmas(struct mmu_gather *tlb,
L
Linus Torvalds 已提交
1351
		struct vm_area_struct *vma, unsigned long start_addr,
1352
		unsigned long end_addr)
L
Linus Torvalds 已提交
1353
{
A
Andrea Arcangeli 已提交
1354
	struct mm_struct *mm = vma->vm_mm;
L
Linus Torvalds 已提交
1355

A
Andrea Arcangeli 已提交
1356
	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1357
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1358
		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
A
Andrea Arcangeli 已提交
1359
	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
L
Linus Torvalds 已提交
1360 1361 1362 1363 1364
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
1365
 * @start: starting address of pages to zap
L
Linus Torvalds 已提交
1366
 * @size: number of bytes to zap
1367
 * @details: details of shared cache invalidation
1368 1369
 *
 * Caller must protect the VMA list
L
Linus Torvalds 已提交
1370
 */
1371
void zap_page_range(struct vm_area_struct *vma, unsigned long start,
L
Linus Torvalds 已提交
1372 1373 1374
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1375
	struct mmu_gather tlb;
1376
	unsigned long end = start + size;
L
Linus Torvalds 已提交
1377 1378

	lru_add_drain();
1379
	tlb_gather_mmu(&tlb, mm, start, end);
1380
	update_hiwater_rss(mm);
1381 1382
	mmu_notifier_invalidate_range_start(mm, start, end);
	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1383
		unmap_single_vma(&tlb, vma, start, end, details);
1384 1385
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_finish_mmu(&tlb, start, end);
L
Linus Torvalds 已提交
1386 1387
}

1388 1389 1390 1391 1392
/**
 * zap_page_range_single - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
1393
 * @details: details of shared cache invalidation
1394 1395
 *
 * The range must fit into one VMA.
L
Linus Torvalds 已提交
1396
 */
1397
static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
L
Linus Torvalds 已提交
1398 1399 1400
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1401
	struct mmu_gather tlb;
L
Linus Torvalds 已提交
1402 1403 1404
	unsigned long end = address + size;

	lru_add_drain();
1405
	tlb_gather_mmu(&tlb, mm, address, end);
1406
	update_hiwater_rss(mm);
1407
	mmu_notifier_invalidate_range_start(mm, address, end);
1408
	unmap_single_vma(&tlb, vma, address, end, details);
1409
	mmu_notifier_invalidate_range_end(mm, address, end);
P
Peter Zijlstra 已提交
1410
	tlb_finish_mmu(&tlb, address, end);
L
Linus Torvalds 已提交
1411 1412
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 * Returns 0 if successful.
 */
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
		return -1;
1431
	zap_page_range_single(vma, address, size, NULL);
1432 1433 1434 1435
	return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

1436
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
H
Harvey Harrison 已提交
1437
			spinlock_t **ptl)
1438 1439 1440 1441
{
	pgd_t * pgd = pgd_offset(mm, addr);
	pud_t * pud = pud_alloc(mm, pgd, addr);
	if (pud) {
1442
		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1443 1444
		if (pmd) {
			VM_BUG_ON(pmd_trans_huge(*pmd));
1445
			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1446
		}
1447 1448 1449 1450
	}
	return NULL;
}

1451 1452 1453 1454 1455 1456 1457
/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
N
Nick Piggin 已提交
1458 1459
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
1460
{
N
Nick Piggin 已提交
1461
	struct mm_struct *mm = vma->vm_mm;
1462
	int retval;
1463
	pte_t *pte;
1464 1465
	spinlock_t *ptl;

1466
	retval = -EINVAL;
1467
	if (PageAnon(page))
1468
		goto out;
1469 1470
	retval = -ENOMEM;
	flush_dcache_page(page);
1471
	pte = get_locked_pte(mm, addr, &ptl);
1472
	if (!pte)
1473
		goto out;
1474 1475 1476 1477 1478 1479
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
1480
	inc_mm_counter_fast(mm, mm_counter_file(page));
1481 1482 1483 1484
	page_add_file_rmap(page);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
1485 1486
	pte_unmap_unlock(pte, ptl);
	return retval;
1487 1488 1489 1490 1491 1492
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

1493 1494 1495 1496 1497 1498
/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
1499 1500 1501 1502 1503 1504
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
N
Nick Piggin 已提交
1505
 * (see split_page()).
1506 1507 1508 1509 1510 1511 1512 1513
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
1514 1515 1516 1517 1518
 *
 * Usually this function is called from f_op->mmap() handler
 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 * Caller must set VM_MIXEDMAP on vma if it wants to call this
 * function from other places, for example from page-fault handler.
1519
 */
N
Nick Piggin 已提交
1520 1521
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
1522 1523 1524 1525 1526
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
1527 1528 1529 1530 1531
	if (!(vma->vm_flags & VM_MIXEDMAP)) {
		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
		BUG_ON(vma->vm_flags & VM_PFNMAP);
		vma->vm_flags |= VM_MIXEDMAP;
	}
N
Nick Piggin 已提交
1532
	return insert_page(vma, addr, page, vma->vm_page_prot);
1533
}
1534
EXPORT_SYMBOL(vm_insert_page);
1535

N
Nick Piggin 已提交
1536
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1537
			pfn_t pfn, pgprot_t prot)
N
Nick Piggin 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	struct mm_struct *mm = vma->vm_mm;
	int retval;
	pte_t *pte, entry;
	spinlock_t *ptl;

	retval = -ENOMEM;
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
1553 1554 1555 1556
	if (pfn_t_devmap(pfn))
		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
	else
		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
N
Nick Piggin 已提交
1557
	set_pte_at(mm, addr, pte, entry);
1558
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
N
Nick Piggin 已提交
1559 1560 1561 1562 1563 1564 1565 1566

	retval = 0;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

N
Nick Piggin 已提交
1567 1568 1569 1570 1571 1572
/**
 * vm_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
1573
 * Similar to vm_insert_page, this allows drivers to insert individual pages
N
Nick Piggin 已提交
1574 1575 1576 1577
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return NULL.
N
Nick Piggin 已提交
1578 1579 1580 1581 1582
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
N
Nick Piggin 已提交
1583 1584
 */
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
N
Nick Piggin 已提交
1585
			unsigned long pfn)
A
Andy Lutomirski 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_pfn);

/**
 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 * @pgprot: pgprot flags for the inserted page
 *
 * This is exactly like vm_insert_pfn, except that it allows drivers to
 * to override pgprot on a per-page basis.
 *
 * This only makes sense for IO mappings, and it makes no sense for
 * cow mappings.  In general, using multiple vmas is preferable;
 * vm_insert_pfn_prot should only be used if using multiple VMAs is
 * impractical.
 */
int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t pgprot)
N
Nick Piggin 已提交
1608
{
1609
	int ret;
N
Nick Piggin 已提交
1610 1611 1612 1613 1614 1615
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
J
Jared Hulbert 已提交
1616 1617 1618 1619 1620
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
N
Nick Piggin 已提交
1621

N
Nick Piggin 已提交
1622 1623
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
1624
	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1625 1626
		return -EINVAL;

1627
	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1628 1629

	return ret;
N
Nick Piggin 已提交
1630
}
A
Andy Lutomirski 已提交
1631
EXPORT_SYMBOL(vm_insert_pfn_prot);
N
Nick Piggin 已提交
1632

N
Nick Piggin 已提交
1633
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634
			pfn_t pfn)
N
Nick Piggin 已提交
1635 1636
{
	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
N
Nick Piggin 已提交
1637

N
Nick Piggin 已提交
1638 1639
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
N
Nick Piggin 已提交
1640

N
Nick Piggin 已提交
1641 1642 1643 1644
	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
H
Hugh Dickins 已提交
1645 1646
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
N
Nick Piggin 已提交
1647
	 */
1648
	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
N
Nick Piggin 已提交
1649 1650
		struct page *page;

1651 1652 1653 1654 1655 1656
		/*
		 * At this point we are committed to insert_page()
		 * regardless of whether the caller specified flags that
		 * result in pfn_t_has_page() == false.
		 */
		page = pfn_to_page(pfn_t_to_pfn(pfn));
N
Nick Piggin 已提交
1657 1658 1659
		return insert_page(vma, addr, page, vma->vm_page_prot);
	}
	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
N
Nick Piggin 已提交
1660
}
N
Nick Piggin 已提交
1661
EXPORT_SYMBOL(vm_insert_mixed);
N
Nick Piggin 已提交
1662

L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
H
Hugh Dickins 已提交
1673
	spinlock_t *ptl;
L
Linus Torvalds 已提交
1674

H
Hugh Dickins 已提交
1675
	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
L
Linus Torvalds 已提交
1676 1677
	if (!pte)
		return -ENOMEM;
1678
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1679 1680
	do {
		BUG_ON(!pte_none(*pte));
N
Nick Piggin 已提交
1681
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
L
Linus Torvalds 已提交
1682 1683
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
1684
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
1685
	pte_unmap_unlock(pte - 1, ptl);
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
1700
	VM_BUG_ON(pmd_trans_huge(*pmd));
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
1745
	unsigned long end = addr + PAGE_ALIGN(size);
L
Linus Torvalds 已提交
1746
	struct mm_struct *mm = vma->vm_mm;
1747
	unsigned long remap_pfn = pfn;
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753 1754
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
1755 1756 1757
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
1758 1759 1760 1761
	 *   VM_DONTEXPAND
	 *      Disable vma merging and expanding with mremap().
	 *   VM_DONTDUMP
	 *      Omit vma from core dump, even when VM_IO turned off.
L
Linus Torvalds 已提交
1762 1763 1764 1765
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1766
	 * See vm_normal_page() for details.
L
Linus Torvalds 已提交
1767
	 */
1768 1769 1770
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
L
Linus Torvalds 已提交
1771
		vma->vm_pgoff = pfn;
1772 1773
	}

1774
	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1775
	if (err)
1776
		return -EINVAL;
L
Linus Torvalds 已提交
1777

1778
	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1791 1792

	if (err)
1793
		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1794

L
Linus Torvalds 已提交
1795 1796 1797 1798
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/**
 * vm_iomap_memory - remap memory to userspace
 * @vma: user vma to map to
 * @start: start of area
 * @len: size of area
 *
 * This is a simplified io_remap_pfn_range() for common driver use. The
 * driver just needs to give us the physical memory range to be mapped,
 * we'll figure out the rest from the vma information.
 *
 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
 * whatever write-combining details or similar.
 */
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
	unsigned long vm_len, pfn, pages;

	/* Check that the physical memory area passed in looks valid */
	if (start + len < start)
		return -EINVAL;
	/*
	 * You *really* shouldn't map things that aren't page-aligned,
	 * but we've historically allowed it because IO memory might
	 * just have smaller alignment.
	 */
	len += start & ~PAGE_MASK;
	pfn = start >> PAGE_SHIFT;
	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
	if (pfn + pages < pfn)
		return -EINVAL;

	/* We start the mapping 'vm_pgoff' pages into the area */
	if (vma->vm_pgoff > pages)
		return -EINVAL;
	pfn += vma->vm_pgoff;
	pages -= vma->vm_pgoff;

	/* Can we fit all of the mapping? */
	vm_len = vma->vm_end - vma->vm_start;
	if (vm_len >> PAGE_SHIFT > pages)
		return -EINVAL;

	/* Ok, let it rip */
	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);

1846 1847 1848 1849 1850 1851
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pte_t *pte;
	int err;
1852
	pgtable_t token;
1853
	spinlock_t *uninitialized_var(ptl);
1854 1855 1856 1857 1858 1859 1860 1861 1862

	pte = (mm == &init_mm) ?
		pte_alloc_kernel(pmd, addr) :
		pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;

	BUG_ON(pmd_huge(*pmd));

1863 1864
	arch_enter_lazy_mmu_mode();

1865
	token = pmd_pgtable(*pmd);
1866 1867

	do {
1868
		err = fn(pte++, token, addr, data);
1869 1870
		if (err)
			break;
1871
	} while (addr += PAGE_SIZE, addr != end);
1872

1873 1874
	arch_leave_lazy_mmu_mode();

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pmd_t *pmd;
	unsigned long next;
	int err;

A
Andi Kleen 已提交
1888 1889
	BUG_ON(pud_huge(*pud));

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);
	return err;
}

static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pud_t *pud;
	unsigned long next;
	int err;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
		if (err)
			break;
	} while (pud++, addr = next, addr != end);
	return err;
}

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	pgd_t *pgd;
	unsigned long next;
1931
	unsigned long end = addr + size;
1932 1933
	int err;

1934 1935 1936
	if (WARN_ON(addr >= end))
		return -EINVAL;

1937 1938 1939 1940 1941 1942 1943
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1944

1945 1946 1947 1948
	return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

1949
/*
1950 1951 1952 1953 1954
 * handle_pte_fault chooses page fault handler according to an entry which was
 * read non-atomically.  Before making any commitment, on those architectures
 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
 * parts, do_swap_page must check under lock before unmapping the pte and
 * proceeding (but do_wp_page is only called after already making such a check;
1955
 * and do_anonymous_page can safely check later on).
1956
 */
H
Hugh Dickins 已提交
1957
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1958 1959 1960 1961 1962
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
H
Hugh Dickins 已提交
1963 1964
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
1965
		same = pte_same(*page_table, orig_pte);
H
Hugh Dickins 已提交
1966
		spin_unlock(ptl);
1967 1968 1969 1970 1971 1972
	}
#endif
	pte_unmap(page_table);
	return same;
}

1973
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1974
{
1975 1976
	debug_dma_assert_idle(src);

1977 1978 1979 1980 1981 1982 1983
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
1984
		void *kaddr = kmap_atomic(dst);
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1994
			clear_page(kaddr);
1995
		kunmap_atomic(kaddr);
1996
		flush_dcache_page(dst);
N
Nick Piggin 已提交
1997 1998
	} else
		copy_user_highpage(dst, src, va, vma);
1999 2000
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
{
	struct file *vm_file = vma->vm_file;

	if (vm_file)
		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;

	/*
	 * Special mappings (e.g. VDSO) do not have any file so fake
	 * a default GFP_KERNEL for them.
	 */
	return GFP_KERNEL;
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
/*
 * Notify the address space that the page is about to become writable so that
 * it can prohibit this or wait for the page to get into an appropriate state.
 *
 * We do this without the lock held, so that it can sleep if it needs to.
 */
static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
	       unsigned long address)
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = page->index;
	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2030
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2031
	vmf.page = page;
2032
	vmf.cow_page = NULL;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
		return ret;
	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
		lock_page(page);
		if (!page->mapping) {
			unlock_page(page);
			return 0; /* retry */
		}
		ret |= VM_FAULT_LOCKED;
	} else
		VM_BUG_ON_PAGE(!PageLocked(page), page);
	return ret;
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
/*
 * Handle write page faults for pages that can be reused in the current vma
 *
 * This can happen either due to the mapping being with the VM_SHARED flag,
 * or due to us being the last reference standing to the page. In either
 * case, all we need to do here is to mark the page as writable and update
 * any related book-keeping.
 */
static inline int wp_page_reuse(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			struct page *page, int page_mkwrite,
			int dirty_shared)
	__releases(ptl)
{
	pte_t entry;
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

	flush_cache_page(vma, address, pte_pfn(orig_pte));
	entry = pte_mkyoung(orig_pte);
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
		update_mmu_cache(vma, address, page_table);
	pte_unmap_unlock(page_table, ptl);

	if (dirty_shared) {
		struct address_space *mapping;
		int dirtied;

		if (!page_mkwrite)
			lock_page(page);

		dirtied = set_page_dirty(page);
		VM_BUG_ON_PAGE(PageAnon(page), page);
		mapping = page->mapping;
		unlock_page(page);
2091
		put_page(page);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

		if ((dirtied || page_mkwrite) && mapping) {
			/*
			 * Some device drivers do not set page.mapping
			 * but still dirty their pages
			 */
			balance_dirty_pages_ratelimited(mapping);
		}

		if (!page_mkwrite)
			file_update_time(vma->vm_file);
	}

	return VM_FAULT_WRITE;
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
/*
 * Handle the case of a page which we actually need to copy to a new page.
 *
 * Called with mmap_sem locked and the old page referenced, but
 * without the ptl held.
 *
 * High level logic flow:
 *
 * - Allocate a page, copy the content of the old page to the new one.
 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
 * - Take the PTL. If the pte changed, bail out and release the allocated page
 * - If the pte is still the way we remember it, update the page table and all
 *   relevant references. This includes dropping the reference the page-table
 *   held to the old page, as well as updating the rmap.
 * - In any case, unlock the PTL and drop the reference we took to the old page.
 */
static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *page_table, pmd_t *pmd,
			pte_t orig_pte, struct page *old_page)
{
	struct page *new_page = NULL;
	spinlock_t *ptl = NULL;
	pte_t entry;
	int page_copied = 0;
	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
	struct mem_cgroup *memcg;

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

	if (is_zero_pfn(pte_pfn(orig_pte))) {
		new_page = alloc_zeroed_user_highpage_movable(vma, address);
		if (!new_page)
			goto oom;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
		if (!new_page)
			goto oom;
		cow_user_page(new_page, old_page, address, vma);
	}

2150
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2151 2152
		goto oom_free_new;

2153 2154
	__SetPageUptodate(new_page);

2155 2156 2157 2158 2159 2160 2161 2162 2163
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

	/*
	 * Re-check the pte - we dropped the lock
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (likely(pte_same(*page_table, orig_pte))) {
		if (old_page) {
			if (!PageAnon(old_page)) {
2164 2165
				dec_mm_counter_fast(mm,
						mm_counter_file(old_page));
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		}
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
		ptep_clear_flush_notify(vma, address, page_table);
2181
		page_add_new_anon_rmap(new_page, vma, address, false);
2182
		mem_cgroup_commit_charge(new_page, memcg, false, false);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
		lru_cache_add_active_or_unevictable(new_page, vma);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
		set_pte_at_notify(mm, address, page_table, entry);
		update_mmu_cache(vma, address, page_table);
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
2214
			page_remove_rmap(old_page, false);
2215 2216 2217 2218 2219 2220
		}

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	} else {
2221
		mem_cgroup_cancel_charge(new_page, memcg, false);
2222 2223 2224
	}

	if (new_page)
2225
		put_page(new_page);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

	pte_unmap_unlock(page_table, ptl);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	if (old_page) {
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
2236 2237
			if (PageMlocked(old_page))
				munlock_vma_page(old_page);
2238 2239
			unlock_page(old_page);
		}
2240
		put_page(old_page);
2241 2242 2243
	}
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
2244
	put_page(new_page);
2245 2246
oom:
	if (old_page)
2247
		put_page(old_page);
2248 2249 2250
	return VM_FAULT_OOM;
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*
 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
 * mapping
 */
static int wp_pfn_shared(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			pmd_t *pmd)
{
	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
		struct vm_fault vmf = {
			.page = NULL,
			.pgoff = linear_page_index(vma, address),
			.virtual_address = (void __user *)(address & PAGE_MASK),
			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
		};
		int ret;

		pte_unmap_unlock(page_table, ptl);
		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
		if (ret & VM_FAULT_ERROR)
			return ret;
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
		/*
		 * We might have raced with another page fault while we
		 * released the pte_offset_map_lock.
		 */
		if (!pte_same(*page_table, orig_pte)) {
			pte_unmap_unlock(page_table, ptl);
			return 0;
		}
	}
	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
			     NULL, 0, 0);
}

2287 2288 2289 2290 2291 2292 2293 2294
static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
			  unsigned long address, pte_t *page_table,
			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
			  struct page *old_page)
	__releases(ptl)
{
	int page_mkwrite = 0;

2295
	get_page(old_page);
2296 2297 2298 2299 2300 2301 2302 2303

	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
		int tmp;

		pte_unmap_unlock(page_table, ptl);
		tmp = do_page_mkwrite(vma, old_page, address);
		if (unlikely(!tmp || (tmp &
				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2304
			put_page(old_page);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
			return tmp;
		}
		/*
		 * Since we dropped the lock we need to revalidate
		 * the PTE as someone else may have changed it.  If
		 * they did, we just return, as we can count on the
		 * MMU to tell us if they didn't also make it writable.
		 */
		page_table = pte_offset_map_lock(mm, pmd, address,
						 &ptl);
		if (!pte_same(*page_table, orig_pte)) {
			unlock_page(old_page);
			pte_unmap_unlock(page_table, ptl);
2318
			put_page(old_page);
2319 2320 2321 2322 2323 2324 2325 2326 2327
			return 0;
		}
		page_mkwrite = 1;
	}

	return wp_page_reuse(mm, vma, address, page_table, ptl,
			     orig_pte, old_page, page_mkwrite, 1);
}

L
Linus Torvalds 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
2342 2343 2344
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2345
 */
2346 2347
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2348
		spinlock_t *ptl, pte_t orig_pte)
2349
	__releases(ptl)
L
Linus Torvalds 已提交
2350
{
2351
	struct page *old_page;
L
Linus Torvalds 已提交
2352

2353
	old_page = vm_normal_page(vma, address, orig_pte);
2354 2355
	if (!old_page) {
		/*
2356 2357
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
2358 2359
		 *
		 * We should not cow pages in a shared writeable mapping.
2360
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2361 2362 2363
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
2364 2365
			return wp_pfn_shared(mm, vma, address, page_table, ptl,
					     orig_pte, pmd);
2366 2367 2368 2369

		pte_unmap_unlock(page_table, ptl);
		return wp_page_copy(mm, vma, address, page_table, pmd,
				    orig_pte, old_page);
2370
	}
L
Linus Torvalds 已提交
2371

2372
	/*
P
Peter Zijlstra 已提交
2373 2374
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
2375
	 */
H
Hugh Dickins 已提交
2376
	if (PageAnon(old_page) && !PageKsm(old_page)) {
2377
		int total_mapcount;
2378
		if (!trylock_page(old_page)) {
2379
			get_page(old_page);
2380 2381 2382 2383 2384 2385
			pte_unmap_unlock(page_table, ptl);
			lock_page(old_page);
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte)) {
				unlock_page(old_page);
2386
				pte_unmap_unlock(page_table, ptl);
2387
				put_page(old_page);
2388
				return 0;
2389
			}
2390
			put_page(old_page);
P
Peter Zijlstra 已提交
2391
		}
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		if (reuse_swap_page(old_page, &total_mapcount)) {
			if (total_mapcount == 1) {
				/*
				 * The page is all ours. Move it to
				 * our anon_vma so the rmap code will
				 * not search our parent or siblings.
				 * Protected against the rmap code by
				 * the page lock.
				 */
				page_move_anon_rmap(compound_head(old_page),
						    vma, address);
			}
2404
			unlock_page(old_page);
2405 2406
			return wp_page_reuse(mm, vma, address, page_table, ptl,
					     orig_pte, old_page, 0, 0);
2407
		}
2408
		unlock_page(old_page);
P
Peter Zijlstra 已提交
2409
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2410
					(VM_WRITE|VM_SHARED))) {
2411 2412
		return wp_page_shared(mm, vma, address, page_table, pmd,
				      ptl, orig_pte, old_page);
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417
	}

	/*
	 * Ok, we need to copy. Oh, well..
	 */
2418
	get_page(old_page);
2419

2420
	pte_unmap_unlock(page_table, ptl);
2421 2422
	return wp_page_copy(mm, vma, address, page_table, pmd,
			    orig_pte, old_page);
L
Linus Torvalds 已提交
2423 2424
}

2425
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
L
Linus Torvalds 已提交
2426 2427 2428
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
2429
	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
L
Linus Torvalds 已提交
2430 2431
}

2432
static inline void unmap_mapping_range_tree(struct rb_root *root,
L
Linus Torvalds 已提交
2433 2434 2435 2436 2437
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	pgoff_t vba, vea, zba, zea;

2438
	vma_interval_tree_foreach(vma, root,
L
Linus Torvalds 已提交
2439 2440 2441
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
2442
		vea = vba + vma_pages(vma) - 1;
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

2450
		unmap_mapping_range_vma(vma,
L
Linus Torvalds 已提交
2451 2452
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2453
				details);
L
Linus Torvalds 已提交
2454 2455 2456 2457
	}
}

/**
2458 2459 2460 2461
 * unmap_mapping_range - unmap the portion of all mmaps in the specified
 * address_space corresponding to the specified page range in the underlying
 * file.
 *
M
Martin Waitz 已提交
2462
 * @mapping: the address space containing mmaps to be unmapped.
L
Linus Torvalds 已提交
2463 2464
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
N
npiggin@suse.de 已提交
2465
 * boundary.  Note that this is different from truncate_pagecache(), which
L
Linus Torvalds 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
M
Michal Hocko 已提交
2477
	struct zap_details details = { };
L
Linus Torvalds 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;

R
Ross Zwisler 已提交
2495 2496

	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2497
	i_mmap_lock_write(mapping);
2498
	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
L
Linus Torvalds 已提交
2499
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2500
	i_mmap_unlock_write(mapping);
L
Linus Torvalds 已提交
2501 2502 2503 2504
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
2505 2506
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
2507 2508 2509 2510
 * We return with pte unmapped and unlocked.
 *
 * We return with the mmap_sem locked or unlocked in the same cases
 * as does filemap_fault().
L
Linus Torvalds 已提交
2511
 */
2512 2513
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2514
		unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
2515
{
2516
	spinlock_t *ptl;
2517
	struct page *page, *swapcache;
2518
	struct mem_cgroup *memcg;
2519
	swp_entry_t entry;
L
Linus Torvalds 已提交
2520
	pte_t pte;
2521
	int locked;
2522
	int exclusive = 0;
N
Nick Piggin 已提交
2523
	int ret = 0;
L
Linus Torvalds 已提交
2524

H
Hugh Dickins 已提交
2525
	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2526
		goto out;
2527 2528

	entry = pte_to_swp_entry(orig_pte);
2529 2530 2531 2532 2533 2534 2535
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
			migration_entry_wait(mm, pmd, address);
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
			print_bad_pte(vma, address, orig_pte, NULL);
H
Hugh Dickins 已提交
2536
			ret = VM_FAULT_SIGBUS;
2537
		}
2538 2539
		goto out;
	}
2540
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
L
Linus Torvalds 已提交
2541 2542
	page = lookup_swap_cache(entry);
	if (!page) {
2543 2544
		page = swapin_readahead(entry,
					GFP_HIGHUSER_MOVABLE, vma, address);
L
Linus Torvalds 已提交
2545 2546
		if (!page) {
			/*
2547 2548
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
L
Linus Torvalds 已提交
2549
			 */
2550
			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
L
Linus Torvalds 已提交
2551 2552
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
2553
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2554
			goto unlock;
L
Linus Torvalds 已提交
2555 2556 2557 2558
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
2559
		count_vm_event(PGMAJFAULT);
2560
		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2561
	} else if (PageHWPoison(page)) {
2562 2563 2564 2565
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
2566 2567
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2568
		swapcache = page;
2569
		goto out_release;
L
Linus Torvalds 已提交
2570 2571
	}

2572
	swapcache = page;
2573
	locked = lock_page_or_retry(page, mm, flags);
R
Rik van Riel 已提交
2574

2575
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2576 2577 2578 2579
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}
2580

A
Andrea Arcangeli 已提交
2581
	/*
2582 2583 2584 2585
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
A
Andrea Arcangeli 已提交
2586
	 */
2587
	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
A
Andrea Arcangeli 已提交
2588 2589
		goto out_page;

2590 2591 2592 2593 2594
	page = ksm_might_need_to_copy(page, vma, address);
	if (unlikely(!page)) {
		ret = VM_FAULT_OOM;
		page = swapcache;
		goto out_page;
H
Hugh Dickins 已提交
2595 2596
	}

2597
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2598
		ret = VM_FAULT_OOM;
2599
		goto out_page;
2600 2601
	}

L
Linus Torvalds 已提交
2602
	/*
2603
	 * Back out if somebody else already faulted in this pte.
L
Linus Torvalds 已提交
2604
	 */
2605
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2606
	if (unlikely(!pte_same(*page_table, orig_pte)))
2607 2608 2609 2610 2611
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
L
Linus Torvalds 已提交
2612 2613
	}

2614 2615 2616 2617 2618 2619 2620 2621 2622
	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 */
L
Linus Torvalds 已提交
2623

2624
	inc_mm_counter_fast(mm, MM_ANONPAGES);
K
KAMEZAWA Hiroyuki 已提交
2625
	dec_mm_counter_fast(mm, MM_SWAPENTS);
L
Linus Torvalds 已提交
2626
	pte = mk_pte(page, vma->vm_page_prot);
2627
	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
L
Linus Torvalds 已提交
2628
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2629
		flags &= ~FAULT_FLAG_WRITE;
2630
		ret |= VM_FAULT_WRITE;
2631
		exclusive = RMAP_EXCLUSIVE;
L
Linus Torvalds 已提交
2632 2633
	}
	flush_icache_page(vma, page);
2634 2635
	if (pte_swp_soft_dirty(orig_pte))
		pte = pte_mksoft_dirty(pte);
L
Linus Torvalds 已提交
2636
	set_pte_at(mm, address, page_table, pte);
2637
	if (page == swapcache) {
2638
		do_page_add_anon_rmap(page, vma, address, exclusive);
2639
		mem_cgroup_commit_charge(page, memcg, true, false);
2640
	} else { /* ksm created a completely new copy */
2641
		page_add_new_anon_rmap(page, vma, address, false);
2642
		mem_cgroup_commit_charge(page, memcg, false, false);
2643 2644
		lru_cache_add_active_or_unevictable(page, vma);
	}
L
Linus Torvalds 已提交
2645

2646
	swap_free(entry);
2647 2648
	if (mem_cgroup_swap_full(page) ||
	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2649
		try_to_free_swap(page);
2650
	unlock_page(page);
2651
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
2661
		put_page(swapcache);
A
Andrea Arcangeli 已提交
2662
	}
2663

2664
	if (flags & FAULT_FLAG_WRITE) {
2665 2666 2667
		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
L
Linus Torvalds 已提交
2668 2669 2670 2671
		goto out;
	}

	/* No need to invalidate - it was non-present before */
2672
	update_mmu_cache(vma, address, page_table);
2673
unlock:
2674
	pte_unmap_unlock(page_table, ptl);
L
Linus Torvalds 已提交
2675 2676
out:
	return ret;
2677
out_nomap:
2678
	mem_cgroup_cancel_charge(page, memcg, false);
2679
	pte_unmap_unlock(page_table, ptl);
2680
out_page:
2681
	unlock_page(page);
2682
out_release:
2683
	put_page(page);
2684
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2685
		unlock_page(swapcache);
2686
		put_page(swapcache);
A
Andrea Arcangeli 已提交
2687
	}
2688
	return ret;
L
Linus Torvalds 已提交
2689 2690
}

2691
/*
2692 2693
 * This is like a special single-page "expand_{down|up}wards()",
 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2694 2695 2696 2697 2698 2699
 * doesn't hit another vma.
 */
static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
{
	address &= PAGE_MASK;
	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
		struct vm_area_struct *prev = vma->vm_prev;

		/*
		 * Is there a mapping abutting this one below?
		 *
		 * That's only ok if it's the same stack mapping
		 * that has gotten split..
		 */
		if (prev && prev->vm_end == address)
			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2710

2711
		return expand_downwards(vma, address - PAGE_SIZE);
2712
	}
2713 2714 2715 2716 2717 2718 2719
	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
		struct vm_area_struct *next = vma->vm_next;

		/* As VM_GROWSDOWN but s/below/above/ */
		if (next && next->vm_start == address + PAGE_SIZE)
			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;

2720
		return expand_upwards(vma, address + PAGE_SIZE);
2721
	}
2722 2723 2724
	return 0;
}

L
Linus Torvalds 已提交
2725
/*
2726 2727 2728
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2729
 */
2730 2731
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2732
		unsigned int flags)
L
Linus Torvalds 已提交
2733
{
2734
	struct mem_cgroup *memcg;
2735 2736
	struct page *page;
	spinlock_t *ptl;
L
Linus Torvalds 已提交
2737 2738
	pte_t entry;

2739 2740
	pte_unmap(page_table);

2741 2742 2743 2744
	/* File mapping without ->vm_ops ? */
	if (vma->vm_flags & VM_SHARED)
		return VM_FAULT_SIGBUS;

2745 2746
	/* Check if we need to add a guard page to the stack */
	if (check_stack_guard_page(vma, address) < 0)
2747
		return VM_FAULT_SIGSEGV;
2748

2749
	/* Use the zero-page for reads */
2750
	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
H
Hugh Dickins 已提交
2751 2752
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
						vma->vm_page_prot));
2753
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2754 2755
		if (!pte_none(*page_table))
			goto unlock;
2756 2757 2758 2759 2760 2761
		/* Deliver the page fault to userland, check inside PT lock */
		if (userfaultfd_missing(vma)) {
			pte_unmap_unlock(page_table, ptl);
			return handle_userfault(vma, address, flags,
						VM_UFFD_MISSING);
		}
H
Hugh Dickins 已提交
2762 2763 2764
		goto setpte;
	}

N
Nick Piggin 已提交
2765 2766 2767 2768 2769 2770
	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
	page = alloc_zeroed_user_highpage_movable(vma, address);
	if (!page)
		goto oom;
2771

2772
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2773 2774
		goto oom_free_page;

2775 2776 2777 2778 2779
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceeding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
N
Nick Piggin 已提交
2780
	__SetPageUptodate(page);
2781

N
Nick Piggin 已提交
2782
	entry = mk_pte(page, vma->vm_page_prot);
H
Hugh Dickins 已提交
2783 2784
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));
L
Linus Torvalds 已提交
2785

N
Nick Piggin 已提交
2786
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2787
	if (!pte_none(*page_table))
N
Nick Piggin 已提交
2788
		goto release;
H
Hugh Dickins 已提交
2789

2790 2791 2792
	/* Deliver the page fault to userland, check inside PT lock */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(page_table, ptl);
2793
		mem_cgroup_cancel_charge(page, memcg, false);
2794
		put_page(page);
2795 2796 2797 2798
		return handle_userfault(vma, address, flags,
					VM_UFFD_MISSING);
	}

2799
	inc_mm_counter_fast(mm, MM_ANONPAGES);
2800
	page_add_new_anon_rmap(page, vma, address, false);
2801
	mem_cgroup_commit_charge(page, memcg, false, false);
2802
	lru_cache_add_active_or_unevictable(page, vma);
H
Hugh Dickins 已提交
2803
setpte:
2804
	set_pte_at(mm, address, page_table, entry);
L
Linus Torvalds 已提交
2805 2806

	/* No need to invalidate - it was non-present before */
2807
	update_mmu_cache(vma, address, page_table);
2808
unlock:
2809
	pte_unmap_unlock(page_table, ptl);
N
Nick Piggin 已提交
2810
	return 0;
2811
release:
2812
	mem_cgroup_cancel_charge(page, memcg, false);
2813
	put_page(page);
2814
	goto unlock;
2815
oom_free_page:
2816
	put_page(page);
2817
oom:
L
Linus Torvalds 已提交
2818 2819 2820
	return VM_FAULT_OOM;
}

2821 2822 2823 2824 2825
/*
 * The mmap_sem must have been held on entry, and may have been
 * released depending on flags and vma->vm_ops->fault() return value.
 * See filemap_fault() and __lock_page_retry().
 */
2826
static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2827 2828
			pgoff_t pgoff, unsigned int flags,
			struct page *cow_page, struct page **page)
2829 2830 2831 2832 2833 2834 2835 2836
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = pgoff;
	vmf.flags = flags;
	vmf.page = NULL;
2837
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2838
	vmf.cow_page = cow_page;
2839 2840 2841 2842

	ret = vma->vm_ops->fault(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;
2843 2844
	if (!vmf.page)
		goto out;
2845 2846 2847 2848

	if (unlikely(PageHWPoison(vmf.page))) {
		if (ret & VM_FAULT_LOCKED)
			unlock_page(vmf.page);
2849
		put_page(vmf.page);
2850 2851 2852 2853 2854 2855 2856 2857
		return VM_FAULT_HWPOISON;
	}

	if (unlikely(!(ret & VM_FAULT_LOCKED)))
		lock_page(vmf.page);
	else
		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);

2858
 out:
2859 2860 2861 2862
	*page = vmf.page;
	return ret;
}

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
/**
 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
 *
 * @vma: virtual memory area
 * @address: user virtual address
 * @page: page to map
 * @pte: pointer to target page table entry
 * @write: true, if new entry is writable
 * @anon: true, if it's anonymous page
 *
 * Caller must hold page table lock relevant for @pte.
 *
 * Target users are page handler itself and implementations of
 * vm_ops->map_pages.
 */
void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2879
		struct page *page, pte_t *pte, bool write, bool anon, bool old)
2880 2881 2882 2883 2884 2885 2886
{
	pte_t entry;

	flush_icache_page(vma, page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write)
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2887 2888
	if (old)
		entry = pte_mkold(entry);
2889 2890
	if (anon) {
		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2891
		page_add_new_anon_rmap(page, vma, address, false);
2892
	} else {
2893
		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2894 2895 2896 2897 2898 2899 2900 2901
		page_add_file_rmap(page);
	}
	set_pte_at(vma->vm_mm, address, pte, entry);

	/* no need to invalidate: a not-present page won't be cached */
	update_mmu_cache(vma, address, pte);
}

2902 2903 2904 2905
/*
 * If architecture emulates "accessed" or "young" bit without HW support,
 * there is no much gain with fault_around.
 */
2906
static unsigned long fault_around_bytes __read_mostly =
2907 2908 2909
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
	PAGE_SIZE;
#else
2910
	rounddown_pow_of_two(65536);
2911
#endif
2912 2913 2914

#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
2915
{
2916
	*val = fault_around_bytes;
2917 2918 2919
	return 0;
}

2920 2921 2922 2923 2924
/*
 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
 * rounded down to nearest page order. It's what do_fault_around() expects to
 * see.
 */
2925
static int fault_around_bytes_set(void *data, u64 val)
2926
{
2927
	if (val / PAGE_SIZE > PTRS_PER_PTE)
2928
		return -EINVAL;
2929 2930 2931 2932
	if (val > PAGE_SIZE)
		fault_around_bytes = rounddown_pow_of_two(val);
	else
		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2933 2934
	return 0;
}
2935 2936
DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2937 2938 2939 2940 2941

static int __init fault_around_debugfs(void)
{
	void *ret;

2942 2943
	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
			&fault_around_bytes_fops);
2944
	if (!ret)
2945
		pr_warn("Failed to create fault_around_bytes in debugfs");
2946 2947 2948 2949
	return 0;
}
late_initcall(fault_around_debugfs);
#endif
2950

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
/*
 * do_fault_around() tries to map few pages around the fault address. The hope
 * is that the pages will be needed soon and this will lower the number of
 * faults to handle.
 *
 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
 * not ready to be mapped: not up-to-date, locked, etc.
 *
 * This function is called with the page table lock taken. In the split ptlock
 * case the page table lock only protects only those entries which belong to
 * the page table corresponding to the fault address.
 *
 * This function doesn't cross the VMA boundaries, in order to call map_pages()
 * only once.
 *
 * fault_around_pages() defines how many pages we'll try to map.
 * do_fault_around() expects it to return a power of two less than or equal to
 * PTRS_PER_PTE.
 *
 * The virtual address of the area that we map is naturally aligned to the
 * fault_around_pages() value (and therefore to page order).  This way it's
 * easier to guarantee that we don't cross page table boundaries.
 */
2974 2975 2976
static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, pgoff_t pgoff, unsigned int flags)
{
2977
	unsigned long start_addr, nr_pages, mask;
2978 2979 2980 2981
	pgoff_t max_pgoff;
	struct vm_fault vmf;
	int off;

2982
	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2983 2984 2985
	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

	start_addr = max(address & mask, vma->vm_start);
2986 2987 2988 2989 2990 2991
	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	pte -= off;
	pgoff -= off;

	/*
	 *  max_pgoff is either end of page table or end of vma
2992
	 *  or fault_around_pages() from pgoff, depending what is nearest.
2993 2994 2995 2996
	 */
	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
		PTRS_PER_PTE - 1;
	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2997
			pgoff + nr_pages - 1);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013

	/* Check if it makes any sense to call ->map_pages */
	while (!pte_none(*pte)) {
		if (++pgoff > max_pgoff)
			return;
		start_addr += PAGE_SIZE;
		if (start_addr >= vma->vm_end)
			return;
		pte++;
	}

	vmf.virtual_address = (void __user *) start_addr;
	vmf.pte = pte;
	vmf.pgoff = pgoff;
	vmf.max_pgoff = max_pgoff;
	vmf.flags = flags;
3014
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
3015 3016 3017
	vma->vm_ops->map_pages(vma, &vmf);
}

3018 3019 3020 3021 3022 3023
static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page;
	spinlock_t *ptl;
3024
	pte_t *pte;
3025 3026 3027 3028 3029 3030 3031
	int ret = 0;

	/*
	 * Let's call ->map_pages() first and use ->fault() as fallback
	 * if page by the offset is not ready to be mapped (cold cache or
	 * something).
	 */
3032
	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3033 3034 3035
		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
		if (!pte_same(*pte, orig_pte))
			goto unlock_out;
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		do_fault_around(vma, address, pte, pgoff, flags);
		/* Check if the fault is handled by faultaround */
		if (!pte_same(*pte, orig_pte)) {
			/*
			 * Faultaround produce old pte, but the pte we've
			 * handler fault for should be young.
			 */
			pte_t entry = pte_mkyoung(*pte);
			if (ptep_set_access_flags(vma, address, pte, entry, 0))
				update_mmu_cache(vma, address, pte);
			goto unlock_out;
		}
3048 3049
		pte_unmap_unlock(pte, ptl);
	}
3050

3051
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3052 3053 3054 3055 3056 3057 3058
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
3059
		put_page(fault_page);
3060 3061
		return ret;
	}
3062
	do_set_pte(vma, address, fault_page, pte, false, false, false);
3063
	unlock_page(fault_page);
3064 3065
unlock_out:
	pte_unmap_unlock(pte, ptl);
3066 3067 3068
	return ret;
}

3069 3070 3071 3072 3073
static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page, *new_page;
3074
	struct mem_cgroup *memcg;
3075
	spinlock_t *ptl;
3076
	pte_t *pte;
3077 3078 3079 3080 3081 3082 3083 3084 3085
	int ret;

	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
	if (!new_page)
		return VM_FAULT_OOM;

3086
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3087
		put_page(new_page);
3088 3089 3090
		return VM_FAULT_OOM;
	}

3091
	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3092 3093 3094
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;

3095 3096
	if (fault_page)
		copy_user_highpage(new_page, fault_page, address, vma);
3097 3098 3099 3100 3101
	__SetPageUptodate(new_page);

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
3102 3103
		if (fault_page) {
			unlock_page(fault_page);
3104
			put_page(fault_page);
3105 3106 3107
		} else {
			/*
			 * The fault handler has no page to lock, so it holds
3108
			 * i_mmap_lock for read to protect against truncate.
3109
			 */
3110
			i_mmap_unlock_read(vma->vm_file->f_mapping);
3111
		}
3112 3113
		goto uncharge_out;
	}
3114
	do_set_pte(vma, address, new_page, pte, true, true, false);
3115
	mem_cgroup_commit_charge(new_page, memcg, false, false);
3116
	lru_cache_add_active_or_unevictable(new_page, vma);
3117
	pte_unmap_unlock(pte, ptl);
3118 3119
	if (fault_page) {
		unlock_page(fault_page);
3120
		put_page(fault_page);
3121 3122 3123
	} else {
		/*
		 * The fault handler has no page to lock, so it holds
3124
		 * i_mmap_lock for read to protect against truncate.
3125
		 */
3126
		i_mmap_unlock_read(vma->vm_file->f_mapping);
3127
	}
3128 3129
	return ret;
uncharge_out:
3130
	mem_cgroup_cancel_charge(new_page, memcg, false);
3131
	put_page(new_page);
3132 3133 3134
	return ret;
}

3135
static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3136
		unsigned long address, pmd_t *pmd,
3137
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
3138
{
3139 3140
	struct page *fault_page;
	struct address_space *mapping;
3141
	spinlock_t *ptl;
3142
	pte_t *pte;
3143 3144
	int dirtied = 0;
	int ret, tmp;
3145

3146
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3147
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3148
		return ret;
L
Linus Torvalds 已提交
3149 3150

	/*
3151 3152
	 * Check if the backing address space wants to know that the page is
	 * about to become writable
L
Linus Torvalds 已提交
3153
	 */
3154 3155 3156 3157 3158
	if (vma->vm_ops->page_mkwrite) {
		unlock_page(fault_page);
		tmp = do_page_mkwrite(vma, fault_page, address);
		if (unlikely(!tmp ||
				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3159
			put_page(fault_page);
3160
			return tmp;
3161
		}
3162 3163
	}

3164 3165 3166 3167
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
3168
		put_page(fault_page);
3169
		return ret;
L
Linus Torvalds 已提交
3170
	}
3171
	do_set_pte(vma, address, fault_page, pte, true, false, false);
3172
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3173

3174 3175
	if (set_page_dirty(fault_page))
		dirtied = 1;
3176 3177 3178 3179 3180 3181
	/*
	 * Take a local copy of the address_space - page.mapping may be zeroed
	 * by truncate after unlock_page().   The address_space itself remains
	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
	 * release semantics to prevent the compiler from undoing this copying.
	 */
3182
	mapping = page_rmapping(fault_page);
3183 3184 3185 3186 3187 3188 3189
	unlock_page(fault_page);
	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
		/*
		 * Some device drivers do not set page.mapping but still
		 * dirty their pages
		 */
		balance_dirty_pages_ratelimited(mapping);
3190
	}
3191

3192
	if (!vma->vm_ops->page_mkwrite)
3193
		file_update_time(vma->vm_file);
N
Nick Piggin 已提交
3194

3195
	return ret;
3196
}
3197

3198 3199 3200 3201 3202 3203
/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults).
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3204
static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3205
		unsigned long address, pte_t *page_table, pmd_t *pmd,
3206
		unsigned int flags, pte_t orig_pte)
3207
{
3208
	pgoff_t pgoff = linear_page_index(vma, address);
3209

3210
	pte_unmap(page_table);
3211 3212 3213
	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
	if (!vma->vm_ops->fault)
		return VM_FAULT_SIGBUS;
3214 3215 3216
	if (!(flags & FAULT_FLAG_WRITE))
		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3217 3218 3219
	if (!(vma->vm_flags & VM_SHARED))
		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3220
	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3221 3222
}

3223
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3224 3225
				unsigned long addr, int page_nid,
				int *flags)
3226 3227 3228 3229
{
	get_page(page);

	count_vm_numa_event(NUMA_HINT_FAULTS);
3230
	if (page_nid == numa_node_id()) {
3231
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3232 3233
		*flags |= TNF_FAULT_LOCAL;
	}
3234 3235 3236 3237

	return mpol_misplaced(page, vma, addr);
}

3238
static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3239 3240
		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
{
3241
	struct page *page = NULL;
3242
	spinlock_t *ptl;
3243
	int page_nid = -1;
3244
	int last_cpupid;
3245
	int target_nid;
3246
	bool migrated = false;
3247
	bool was_writable = pte_write(pte);
3248
	int flags = 0;
3249

3250 3251 3252
	/* A PROT_NONE fault should not end up here */
	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));

3253 3254 3255 3256 3257
	/*
	* The "pte" at this point cannot be used safely without
	* validation through pte_unmap_same(). It's of NUMA type but
	* the pfn may be screwed if the read is non atomic.
	*
3258 3259 3260
	* We can safely just do a "set_pte_at()", because the old
	* page table entry is not accessible, so there would be no
	* concurrent hardware modifications to the PTE.
3261 3262 3263
	*/
	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
3264 3265 3266 3267 3268
	if (unlikely(!pte_same(*ptep, pte))) {
		pte_unmap_unlock(ptep, ptl);
		goto out;
	}

3269 3270 3271
	/* Make it present again */
	pte = pte_modify(pte, vma->vm_page_prot);
	pte = pte_mkyoung(pte);
3272 3273
	if (was_writable)
		pte = pte_mkwrite(pte);
3274 3275 3276 3277 3278 3279 3280 3281 3282
	set_pte_at(mm, addr, ptep, pte);
	update_mmu_cache(vma, addr, ptep);

	page = vm_normal_page(vma, addr, pte);
	if (!page) {
		pte_unmap_unlock(ptep, ptl);
		return 0;
	}

3283 3284 3285 3286 3287 3288
	/* TODO: handle PTE-mapped THP */
	if (PageCompound(page)) {
		pte_unmap_unlock(ptep, ptl);
		return 0;
	}

3289
	/*
3290 3291 3292 3293 3294 3295
	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
	 * much anyway since they can be in shared cache state. This misses
	 * the case where a mapping is writable but the process never writes
	 * to it but pte_write gets cleared during protection updates and
	 * pte_dirty has unpredictable behaviour between PTE scan updates,
	 * background writeback, dirty balancing and application behaviour.
3296
	 */
3297
	if (!(vma->vm_flags & VM_WRITE))
3298 3299
		flags |= TNF_NO_GROUP;

3300 3301 3302 3303 3304 3305 3306
	/*
	 * Flag if the page is shared between multiple address spaces. This
	 * is later used when determining whether to group tasks together
	 */
	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
		flags |= TNF_SHARED;

3307
	last_cpupid = page_cpupid_last(page);
3308
	page_nid = page_to_nid(page);
3309
	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3310
	pte_unmap_unlock(ptep, ptl);
3311 3312 3313 3314 3315 3316
	if (target_nid == -1) {
		put_page(page);
		goto out;
	}

	/* Migrate to the requested node */
3317
	migrated = migrate_misplaced_page(page, vma, target_nid);
3318
	if (migrated) {
3319
		page_nid = target_nid;
3320
		flags |= TNF_MIGRATED;
3321 3322
	} else
		flags |= TNF_MIGRATE_FAIL;
3323 3324

out:
3325
	if (page_nid != -1)
3326
		task_numa_fault(last_cpupid, page_nid, 1, flags);
3327 3328 3329
	return 0;
}

M
Matthew Wilcox 已提交
3330 3331 3332
static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, unsigned int flags)
{
3333
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
			unsigned int flags)
{
3344
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3345 3346 3347 3348 3349 3350
		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

L
Linus Torvalds 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359
/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
H
Hugh Dickins 已提交
3360 3361
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
3362 3363 3364 3365
 * We return with pte unmapped and unlocked.
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3366
 */
3367
static int handle_pte_fault(struct mm_struct *mm,
3368 3369
		     struct vm_area_struct *vma, unsigned long address,
		     pte_t *pte, pmd_t *pmd, unsigned int flags)
L
Linus Torvalds 已提交
3370 3371
{
	pte_t entry;
3372
	spinlock_t *ptl;
L
Linus Torvalds 已提交
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	/*
	 * some architectures can have larger ptes than wordsize,
	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
	 * The code below just needs a consistent view for the ifs and
	 * we later double check anyway with the ptl lock held. So here
	 * a barrier will do.
	 */
	entry = *pte;
	barrier();
L
Linus Torvalds 已提交
3384
	if (!pte_present(entry)) {
3385
		if (pte_none(entry)) {
3386 3387 3388 3389
			if (vma_is_anonymous(vma))
				return do_anonymous_page(mm, vma, address,
							 pte, pmd, flags);
			else
3390 3391
				return do_fault(mm, vma, address, pte, pmd,
						flags, entry);
3392 3393
		}
		return do_swap_page(mm, vma, address,
3394
					pte, pmd, flags, entry);
L
Linus Torvalds 已提交
3395 3396
	}

3397
	if (pte_protnone(entry))
3398 3399
		return do_numa_page(mm, vma, address, entry, pte, pmd);

H
Hugh Dickins 已提交
3400
	ptl = pte_lockptr(mm, pmd);
3401 3402 3403
	spin_lock(ptl);
	if (unlikely(!pte_same(*pte, entry)))
		goto unlock;
3404
	if (flags & FAULT_FLAG_WRITE) {
L
Linus Torvalds 已提交
3405
		if (!pte_write(entry))
3406 3407
			return do_wp_page(mm, vma, address,
					pte, pmd, ptl, entry);
L
Linus Torvalds 已提交
3408 3409 3410
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
3411
	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3412
		update_mmu_cache(vma, address, pte);
3413 3414 3415 3416 3417 3418 3419
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
3420
		if (flags & FAULT_FLAG_WRITE)
3421
			flush_tlb_fix_spurious_fault(vma, address);
3422
	}
3423 3424
unlock:
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3425
	return 0;
L
Linus Torvalds 已提交
3426 3427 3428 3429
}

/*
 * By the time we get here, we already hold the mm semaphore
3430 3431 3432
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3433
 */
3434 3435
static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			     unsigned long address, unsigned int flags)
L
Linus Torvalds 已提交
3436 3437 3438 3439 3440 3441
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

3442
	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3443
					    flags & FAULT_FLAG_INSTRUCTION,
3444
					    flags & FAULT_FLAG_REMOTE))
3445 3446
		return VM_FAULT_SIGSEGV;

3447
	if (unlikely(is_vm_hugetlb_page(vma)))
3448
		return hugetlb_fault(mm, vma, address, flags);
L
Linus Torvalds 已提交
3449 3450 3451 3452

	pgd = pgd_offset(mm, address);
	pud = pud_alloc(mm, pgd, address);
	if (!pud)
H
Hugh Dickins 已提交
3453
		return VM_FAULT_OOM;
L
Linus Torvalds 已提交
3454 3455
	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
H
Hugh Dickins 已提交
3456
		return VM_FAULT_OOM;
3457
	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
M
Matthew Wilcox 已提交
3458
		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3459 3460
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
3461 3462
	} else {
		pmd_t orig_pmd = *pmd;
3463 3464
		int ret;

3465
		barrier();
3466
		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3467 3468
			unsigned int dirty = flags & FAULT_FLAG_WRITE;

3469
			if (pmd_protnone(orig_pmd))
3470
				return do_huge_pmd_numa_page(mm, vma, address,
3471 3472
							     orig_pmd, pmd);

3473
			if (dirty && !pmd_write(orig_pmd)) {
M
Matthew Wilcox 已提交
3474 3475
				ret = wp_huge_pmd(mm, vma, address, pmd,
							orig_pmd, flags);
3476 3477
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
3478 3479 3480
			} else {
				huge_pmd_set_accessed(mm, vma, address, pmd,
						      orig_pmd, dirty);
3481
				return 0;
3482
			}
3483 3484 3485 3486
		}
	}

	/*
3487
	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3488 3489 3490
	 * run pte_offset_map on the pmd, if an huge pmd could
	 * materialize from under us from a different thread.
	 */
3491
	if (unlikely(pte_alloc(mm, pmd, address)))
H
Hugh Dickins 已提交
3492
		return VM_FAULT_OOM;
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	/*
	 * If a huge pmd materialized under us just retry later.  Use
	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
	 * in a different thread of this mm, in turn leading to a misleading
	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
	 * regular pmd that we can walk with pte_offset_map() and we can do that
	 * through an atomic read in C, which is what pmd_trans_unstable()
	 * provides.
	 */
	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3505 3506 3507 3508 3509 3510 3511 3512
		return 0;
	/*
	 * A regular pmd is established and it can't morph into a huge pmd
	 * from under us anymore at this point because we hold the mmap_sem
	 * read mode and khugepaged takes it in write mode. So now it's
	 * safe to run pte_offset_map().
	 */
	pte = pte_offset_map(pmd, address);
L
Linus Torvalds 已提交
3513

3514
	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
L
Linus Torvalds 已提交
3515 3516
}

3517 3518 3519 3520 3521 3522
/*
 * By the time we get here, we already hold the mm semaphore
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		    unsigned long address, unsigned int flags)
{
	int ret;

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
	mem_cgroup_count_vm_event(mm, PGFAULT);

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

	/*
	 * Enable the memcg OOM handling for faults triggered in user
	 * space.  Kernel faults are handled more gracefully.
	 */
	if (flags & FAULT_FLAG_USER)
3541
		mem_cgroup_oom_enable();
3542 3543 3544

	ret = __handle_mm_fault(mm, vma, address, flags);

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	if (flags & FAULT_FLAG_USER) {
		mem_cgroup_oom_disable();
                /*
                 * The task may have entered a memcg OOM situation but
                 * if the allocation error was handled gracefully (no
                 * VM_FAULT_OOM), there is no need to kill anything.
                 * Just clean up the OOM state peacefully.
                 */
                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
                        mem_cgroup_oom_synchronize(false);
	}
3556

3557 3558
	return ret;
}
3559
EXPORT_SYMBOL_GPL(handle_mm_fault);
3560

L
Linus Torvalds 已提交
3561 3562 3563
#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
H
Hugh Dickins 已提交
3564
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3565
 */
3566
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
L
Linus Torvalds 已提交
3567
{
H
Hugh Dickins 已提交
3568 3569
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
3570
		return -ENOMEM;
L
Linus Torvalds 已提交
3571

3572 3573
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3574
	spin_lock(&mm->page_table_lock);
3575
	if (pgd_present(*pgd))		/* Another has populated it */
3576
		pud_free(mm, new);
3577 3578
	else
		pgd_populate(mm, pgd, new);
H
Hugh Dickins 已提交
3579
	spin_unlock(&mm->page_table_lock);
3580
	return 0;
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
H
Hugh Dickins 已提交
3587
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3588
 */
3589
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
L
Linus Torvalds 已提交
3590
{
H
Hugh Dickins 已提交
3591 3592
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
3593
		return -ENOMEM;
L
Linus Torvalds 已提交
3594

3595 3596
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3597
	spin_lock(&mm->page_table_lock);
L
Linus Torvalds 已提交
3598
#ifndef __ARCH_HAS_4LEVEL_HACK
3599 3600
	if (!pud_present(*pud)) {
		mm_inc_nr_pmds(mm);
3601
		pud_populate(mm, pud, new);
3602
	} else	/* Another has populated it */
3603
		pmd_free(mm, new);
3604 3605 3606
#else
	if (!pgd_present(*pud)) {
		mm_inc_nr_pmds(mm);
3607
		pgd_populate(mm, pud, new);
3608 3609
	} else /* Another has populated it */
		pmd_free(mm, new);
L
Linus Torvalds 已提交
3610
#endif /* __ARCH_HAS_4LEVEL_HACK */
H
Hugh Dickins 已提交
3611
	spin_unlock(&mm->page_table_lock);
3612
	return 0;
3613
}
L
Linus Torvalds 已提交
3614 3615
#endif /* __PAGETABLE_PMD_FOLDED */

3616
static int __follow_pte(struct mm_struct *mm, unsigned long address,
J
Johannes Weiner 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		pte_t **ptepp, spinlock_t **ptlp)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
3633
	VM_BUG_ON(pmd_trans_huge(*pmd));
J
Johannes Weiner 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto out;

	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
	if (pmd_huge(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!ptep)
		goto out;
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
out:
	return -EINVAL;
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
	return res;
}

J
Johannes Weiner 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

3694
#ifdef CONFIG_HAVE_IOREMAP_PROT
3695 3696 3697
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
3698
{
3699
	int ret = -EINVAL;
3700 3701 3702
	pte_t *ptep, pte;
	spinlock_t *ptl;

3703 3704
	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;
3705

3706
	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3707
		goto out;
3708
	pte = *ptep;
3709

3710 3711 3712 3713
	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
3714
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3715

3716
	ret = 0;
3717 3718 3719
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
3720
	return ret;
3721 3722 3723 3724 3725 3726 3727
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
K
KOSAKI Motohiro 已提交
3728
	void __iomem *maddr;
3729 3730
	int offset = addr & (PAGE_SIZE-1);

3731
	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3732 3733
		return -EINVAL;

3734
	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3735 3736 3737 3738 3739 3740 3741 3742
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
3743
EXPORT_SYMBOL_GPL(generic_access_phys);
3744 3745
#endif

3746
/*
3747 3748
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
3749
 */
3750 3751
static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long addr, void *buf, int len, int write)
3752 3753 3754 3755 3756
{
	struct vm_area_struct *vma;
	void *old_buf = buf;

	down_read(&mm->mmap_sem);
S
Simon Arlott 已提交
3757
	/* ignore errors, just check how much was successfully transferred */
3758 3759 3760
	while (len) {
		int bytes, ret, offset;
		void *maddr;
3761
		struct page *page = NULL;
3762

3763
		ret = get_user_pages_remote(tsk, mm, addr, 1,
3764
				write, 1, &page, &vma);
3765
		if (ret <= 0) {
3766 3767 3768
#ifndef CONFIG_HAVE_IOREMAP_PROT
			break;
#else
3769 3770 3771 3772 3773
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
			vma = find_vma(mm, addr);
3774
			if (!vma || vma->vm_start > addr)
3775 3776 3777 3778 3779 3780 3781
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
				break;
			bytes = ret;
3782
#endif
3783
		} else {
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
3799
			put_page(page);
3800 3801 3802 3803 3804 3805 3806 3807 3808
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}
3809

S
Stephen Wilson 已提交
3810
/**
3811
 * access_remote_vm - access another process' address space
S
Stephen Wilson 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
 * @write:	whether the access is a write
 *
 * The caller must hold a reference on @mm.
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write)
{
	return __access_remote_vm(NULL, mm, addr, buf, len, write);
}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
		void *buf, int len, int write)
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
	mmput(mm);

	return ret;
}

3847 3848 3849 3850 3851 3852 3853 3854
/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

3855 3856 3857 3858 3859 3860 3861
	/*
	 * Do not print if we are in atomic
	 * contexts (in exception stacks, etc.):
	 */
	if (preempt_count())
		return;

3862 3863 3864 3865 3866 3867
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
		char *buf = (char *)__get_free_page(GFP_KERNEL);
		if (buf) {
A
Andy Shevchenko 已提交
3868
			char *p;
3869

M
Miklos Szeredi 已提交
3870
			p = file_path(f, buf, PAGE_SIZE);
3871 3872
			if (IS_ERR(p))
				p = "?";
A
Andy Shevchenko 已提交
3873
			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3874 3875 3876 3877 3878
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
3879
	up_read(&mm->mmap_sem);
3880
}
3881

3882
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3883
void __might_fault(const char *file, int line)
3884
{
3885 3886 3887 3888 3889 3890 3891 3892
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
	if (segment_eq(get_fs(), KERNEL_DS))
		return;
3893
	if (pagefault_disabled())
3894
		return;
3895 3896
	__might_sleep(file, line, 0);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3897
	if (current->mm)
3898
		might_lock_read(&current->mm->mmap_sem);
3899
#endif
3900
}
3901
EXPORT_SYMBOL(__might_fault);
3902
#endif
A
Andrea Arcangeli 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
void clear_huge_page(struct page *page,
		     unsigned long addr, unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
	}
}

static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_user_huge_page(struct page *dst, struct page *src,
			 unsigned long addr, struct vm_area_struct *vma,
			 unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
	}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3974

3975
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3976 3977 3978 3979 3980 3981 3982 3983 3984

static struct kmem_cache *page_ptl_cachep;

void __init ptlock_cache_init(void)
{
	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
			SLAB_PANIC, NULL);
}

3985
bool ptlock_alloc(struct page *page)
3986 3987 3988
{
	spinlock_t *ptl;

3989
	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3990 3991
	if (!ptl)
		return false;
3992
	page->ptl = ptl;
3993 3994 3995
	return true;
}

3996
void ptlock_free(struct page *page)
3997
{
3998
	kmem_cache_free(page_ptl_cachep, page->ptl);
3999 4000
}
#endif