memory.c 105.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
H
Hugh Dickins 已提交
48
#include <linux/ksm.h>
L
Linus Torvalds 已提交
49
#include <linux/rmap.h>
50
#include <linux/export.h>
51
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
52
#include <linux/init.h>
P
Peter Zijlstra 已提交
53
#include <linux/writeback.h>
54
#include <linux/memcontrol.h>
A
Andrea Arcangeli 已提交
55
#include <linux/mmu_notifier.h>
56 57 58
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
59
#include <linux/gfp.h>
60
#include <linux/migrate.h>
A
Andy Shevchenko 已提交
61
#include <linux/string.h>
62
#include <linux/dma-debug.h>
63
#include <linux/debugfs.h>
64
#include <linux/userfaultfd_k.h>
L
Linus Torvalds 已提交
65

A
Alexey Dobriyan 已提交
66
#include <asm/io.h>
L
Linus Torvalds 已提交
67 68 69 70 71 72
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

73 74
#include "internal.h"

75 76
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 78
#endif

A
Andy Whitcroft 已提交
79
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;

EXPORT_SYMBOL(high_memory);

99 100 101 102 103 104 105 106 107 108 109 110
/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif
111 112 113 114

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
115
	return 1;
116 117 118
}
__setup("norandmaps", disable_randmaps);

H
Hugh Dickins 已提交
119
unsigned long zero_pfn __read_mostly;
H
Hugh Dickins 已提交
120
unsigned long highest_memmap_pfn __read_mostly;
H
Hugh Dickins 已提交
121

122 123
EXPORT_SYMBOL(zero_pfn);

H
Hugh Dickins 已提交
124 125 126 127 128 129 130 131 132
/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);
133

K
KAMEZAWA Hiroyuki 已提交
134

135 136
#if defined(SPLIT_RSS_COUNTING)

137
void sync_mm_rss(struct mm_struct *mm)
138 139 140 141
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
142 143 144
		if (current->rss_stat.count[i]) {
			add_mm_counter(mm, i, current->rss_stat.count[i]);
			current->rss_stat.count[i] = 0;
145 146
		}
	}
147
	current->rss_stat.events = 0;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169
		sync_mm_rss(task->mm);
170
}
171
#else /* SPLIT_RSS_COUNTING */
172 173 174 175 176 177 178 179

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

180 181 182 183
#endif /* SPLIT_RSS_COUNTING */

#ifdef HAVE_GENERIC_MMU_GATHER

184
static bool tlb_next_batch(struct mmu_gather *tlb)
185 186 187 188 189 190
{
	struct mmu_gather_batch *batch;

	batch = tlb->active;
	if (batch->next) {
		tlb->active = batch->next;
191
		return true;
192 193
	}

194
	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195
		return false;
196

197 198
	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
	if (!batch)
199
		return false;
200

201
	tlb->batch_count++;
202 203 204 205 206 207 208
	batch->next = NULL;
	batch->nr   = 0;
	batch->max  = MAX_GATHER_BATCH;

	tlb->active->next = batch;
	tlb->active = batch;

209
	return true;
210 211 212 213 214 215 216
}

/* tlb_gather_mmu
 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 *	users and we're going to destroy the full address space (exit/execve).
 */
217
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 219 220
{
	tlb->mm = mm;

221 222
	/* Is it from 0 to ~0? */
	tlb->fullmm     = !(start | (end+1));
223
	tlb->need_flush_all = 0;
224 225 226 227
	tlb->local.next = NULL;
	tlb->local.nr   = 0;
	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
	tlb->active     = &tlb->local;
228
	tlb->batch_count = 0;
229 230 231 232

#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb->batch = NULL;
#endif
233 234

	__tlb_reset_range(tlb);
235 236
}

237
static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238
{
239 240 241
	if (!tlb->end)
		return;

242
	tlb_flush(tlb);
243
	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 245
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb_table_flush(tlb);
246
#endif
247
	__tlb_reset_range(tlb);
248 249 250 251 252
}

static void tlb_flush_mmu_free(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;
253

254
	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255 256 257 258 259 260
		free_pages_and_swap_cache(batch->pages, batch->nr);
		batch->nr = 0;
	}
	tlb->active = &tlb->local;
}

261 262 263 264 265 266
void tlb_flush_mmu(struct mmu_gather *tlb)
{
	tlb_flush_mmu_tlbonly(tlb);
	tlb_flush_mmu_free(tlb);
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/* tlb_finish_mmu
 *	Called at the end of the shootdown operation to free up any resources
 *	that were required.
 */
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	struct mmu_gather_batch *batch, *next;

	tlb_flush_mmu(tlb);

	/* keep the page table cache within bounds */
	check_pgt_cache();

	for (batch = tlb->local.next; batch; batch = next) {
		next = batch->next;
		free_pages((unsigned long)batch, 0);
	}
	tlb->local.next = NULL;
}

/* __tlb_remove_page
 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 *	handling the additional races in SMP caused by other CPUs caching valid
 *	mappings in their TLBs. Returns the number of free page slots left.
 *	When out of page slots we must call tlb_flush_mmu().
 */
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
	struct mmu_gather_batch *batch;

297
	VM_BUG_ON(!tlb->end);
298 299 300 301 302 303

	batch = tlb->active;
	batch->pages[batch->nr++] = page;
	if (batch->nr == batch->max) {
		if (!tlb_next_batch(tlb))
			return 0;
304
		batch = tlb->active;
305
	}
306
	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307 308 309 310 311 312

	return batch->max - batch->nr;
}

#endif /* HAVE_GENERIC_MMU_GATHER */

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_HAVE_RCU_TABLE_FREE

/*
 * See the comment near struct mmu_table_batch.
 */

static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely on
	 * IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

	/*
	 * When there's less then two users of this mm there cannot be a
	 * concurrent page-table walk.
	 */
	if (atomic_read(&tlb->mm->mm_users) < 2) {
		__tlb_remove_table(table);
		return;
	}

	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
		tlb_table_flush(tlb);
}

386
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387

L
Linus Torvalds 已提交
388 389 390 391
/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
392 393
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
L
Linus Torvalds 已提交
394
{
395
	pgtable_t token = pmd_pgtable(*pmd);
396
	pmd_clear(pmd);
397
	pte_free_tlb(tlb, token, addr);
398
	atomic_long_dec(&tlb->mm->nr_ptes);
L
Linus Torvalds 已提交
399 400
}

401 402 403
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
404 405 406
{
	pmd_t *pmd;
	unsigned long next;
407
	unsigned long start;
L
Linus Torvalds 已提交
408

409
	start = addr;
L
Linus Torvalds 已提交
410 411 412 413 414
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
415
		free_pte_range(tlb, pmd, addr);
L
Linus Torvalds 已提交
416 417
	} while (pmd++, addr = next, addr != end);

418 419 420 421 422 423 424
	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
425
	}
426 427 428 429 430
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
431
	pmd_free_tlb(tlb, pmd, start);
432
	mm_dec_nr_pmds(tlb->mm);
L
Linus Torvalds 已提交
433 434
}

435 436 437
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
438 439 440
{
	pud_t *pud;
	unsigned long next;
441
	unsigned long start;
L
Linus Torvalds 已提交
442

443
	start = addr;
L
Linus Torvalds 已提交
444 445 446 447 448
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
449
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
450 451
	} while (pud++, addr = next, addr != end);

452 453 454 455 456 457 458
	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
459
	}
460 461 462 463 464
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
465
	pud_free_tlb(tlb, pud, start);
L
Linus Torvalds 已提交
466 467 468
}

/*
469
 * This function frees user-level page tables of a process.
L
Linus Torvalds 已提交
470
 */
471
void free_pgd_range(struct mmu_gather *tlb,
472 473
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
474 475 476
{
	pgd_t *pgd;
	unsigned long next;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
L
Linus Torvalds 已提交
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

520
	pgd = pgd_offset(tlb->mm, addr);
L
Linus Torvalds 已提交
521 522 523 524
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
525
		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
526
	} while (pgd++, addr = next, addr != end);
527 528
}

529
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530
		unsigned long floor, unsigned long ceiling)
531 532 533 534 535
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

536
		/*
N
npiggin@suse.de 已提交
537 538
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
539
		 */
540
		unlink_anon_vmas(vma);
541 542
		unlink_file_vma(vma);

543
		if (is_vm_hugetlb_page(vma)) {
544
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545
				floor, next? next->vm_start: ceiling);
546 547 548 549 550
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551
			       && !is_vm_hugetlb_page(next)) {
552 553
				vma = next;
				next = vma->vm_next;
554
				unlink_anon_vmas(vma);
555
				unlink_file_vma(vma);
556 557 558 559
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
560 561
		vma = next;
	}
L
Linus Torvalds 已提交
562 563
}

564 565
int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
		pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
566
{
567
	spinlock_t *ptl;
568
	pgtable_t new = pte_alloc_one(mm, address);
569
	int wait_split_huge_page;
570 571 572
	if (!new)
		return -ENOMEM;

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

588
	ptl = pmd_lock(mm, pmd);
589 590
	wait_split_huge_page = 0;
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
591
		atomic_long_inc(&mm->nr_ptes);
L
Linus Torvalds 已提交
592
		pmd_populate(mm, pmd, new);
593
		new = NULL;
594 595
	} else if (unlikely(pmd_trans_splitting(*pmd)))
		wait_split_huge_page = 1;
596
	spin_unlock(ptl);
597 598
	if (new)
		pte_free(mm, new);
599 600
	if (wait_split_huge_page)
		wait_split_huge_page(vma->anon_vma, pmd);
601
	return 0;
L
Linus Torvalds 已提交
602 603
}

604
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
605
{
606 607 608 609
	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
	if (!new)
		return -ENOMEM;

610 611
	smp_wmb(); /* See comment in __pte_alloc */

612
	spin_lock(&init_mm.page_table_lock);
613
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
614
		pmd_populate_kernel(&init_mm, pmd, new);
615
		new = NULL;
616 617
	} else
		VM_BUG_ON(pmd_trans_splitting(*pmd));
618
	spin_unlock(&init_mm.page_table_lock);
619 620
	if (new)
		pte_free_kernel(&init_mm, new);
621
	return 0;
L
Linus Torvalds 已提交
622 623
}

K
KAMEZAWA Hiroyuki 已提交
624 625 626 627 628 629
static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630
{
K
KAMEZAWA Hiroyuki 已提交
631 632
	int i;

633
	if (current->mm == mm)
634
		sync_mm_rss(mm);
K
KAMEZAWA Hiroyuki 已提交
635 636 637
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
638 639
}

N
Nick Piggin 已提交
640
/*
641 642 643
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
N
Nick Piggin 已提交
644 645 646
 *
 * The calling function must still handle the error.
 */
647 648
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
N
Nick Piggin 已提交
649
{
650 651 652 653 654
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
655 656 657 658 659 660 661 662 663 664 665 666 667 668
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
669 670
			printk(KERN_ALERT
				"BUG: Bad page map: %lu messages suppressed\n",
671 672 673 674 675 676 677
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;
678 679 680 681

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

682 683
	printk(KERN_ALERT
		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
684 685
		current->comm,
		(long long)pte_val(pte), (long long)pmd_val(*pmd));
686
	if (page)
687
		dump_page(page, "bad pte");
688
	printk(KERN_ALERT
689 690 691 692 693
		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
	/*
	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
	 */
694 695 696 697 698
	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
		 vma->vm_file,
		 vma->vm_ops ? vma->vm_ops->fault : NULL,
		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
		 mapping ? mapping->a_ops->readpage : NULL);
N
Nick Piggin 已提交
699
	dump_stack();
700
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
N
Nick Piggin 已提交
701 702
}

H
Hugh Dickins 已提交
703
/*
N
Nick Piggin 已提交
704
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705
 *
N
Nick Piggin 已提交
706 707 708
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
J
Jared Hulbert 已提交
709
 *
N
Nick Piggin 已提交
710 711 712 713 714 715 716 717
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
718
 *
J
Jared Hulbert 已提交
719 720
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
N
Nick Piggin 已提交
721 722
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
723 724 725
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
N
Nick Piggin 已提交
726 727 728 729 730 731
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
J
Jared Hulbert 已提交
732 733
 *
 *
N
Nick Piggin 已提交
734
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
J
Jared Hulbert 已提交
735 736 737 738 739 740 741 742 743
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
H
Hugh Dickins 已提交
744
 */
N
Nick Piggin 已提交
745 746 747 748 749 750 751
#ifdef __HAVE_ARCH_PTE_SPECIAL
# define HAVE_PTE_SPECIAL 1
#else
# define HAVE_PTE_SPECIAL 0
#endif
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
				pte_t pte)
H
Hugh Dickins 已提交
752
{
753
	unsigned long pfn = pte_pfn(pte);
N
Nick Piggin 已提交
754 755

	if (HAVE_PTE_SPECIAL) {
756
		if (likely(!pte_special(pte)))
757
			goto check_pfn;
758 759
		if (vma->vm_ops && vma->vm_ops->find_special_page)
			return vma->vm_ops->find_special_page(vma, addr);
H
Hugh Dickins 已提交
760 761
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
H
Hugh Dickins 已提交
762
		if (!is_zero_pfn(pfn))
763
			print_bad_pte(vma, addr, pte, NULL);
N
Nick Piggin 已提交
764 765 766 767 768
		return NULL;
	}

	/* !HAVE_PTE_SPECIAL case follows: */

J
Jared Hulbert 已提交
769 770 771 772 773 774
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
N
Nick Piggin 已提交
775 776
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
J
Jared Hulbert 已提交
777 778 779 780 781
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
782 783
	}

784 785
	if (is_zero_pfn(pfn))
		return NULL;
786 787 788 789 790
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}
791 792

	/*
N
Nick Piggin 已提交
793 794
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
795
	 */
J
Jared Hulbert 已提交
796
out:
797
	return pfn_to_page(pfn);
H
Hugh Dickins 已提交
798 799
}

L
Linus Torvalds 已提交
800 801 802 803 804 805
/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

H
Hugh Dickins 已提交
806
static inline unsigned long
L
Linus Torvalds 已提交
807
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
N
Nick Piggin 已提交
808
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
H
Hugh Dickins 已提交
809
		unsigned long addr, int *rss)
L
Linus Torvalds 已提交
810
{
N
Nick Piggin 已提交
811
	unsigned long vm_flags = vma->vm_flags;
L
Linus Torvalds 已提交
812 813 814 815 816
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (likely(!non_swap_entry(entry))) {
			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
							&src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			rss[MM_SWAPENTS]++;
		} else if (is_migration_entry(entry)) {
			page = migration_entry_to_page(entry);

835
			rss[mm_counter(page)]++;
836 837 838 839 840 841 842 843 844 845 846 847

			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				if (pte_swp_soft_dirty(*src_pte))
					pte = pte_swp_mksoft_dirty(pte);
				set_pte_at(src_mm, addr, src_pte, pte);
848
			}
L
Linus Torvalds 已提交
849
		}
850
		goto out_set_pte;
L
Linus Torvalds 已提交
851 852 853 854 855 856
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
857
	if (is_cow_mapping(vm_flags)) {
L
Linus Torvalds 已提交
858
		ptep_set_wrprotect(src_mm, addr, src_pte);
859
		pte = pte_wrprotect(pte);
L
Linus Torvalds 已提交
860 861 862 863 864 865 866 867 868
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
869 870 871 872

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
H
Hugh Dickins 已提交
873
		page_dup_rmap(page);
874
		rss[mm_counter(page)]++;
875
	}
876 877 878

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
H
Hugh Dickins 已提交
879
	return 0;
L
Linus Torvalds 已提交
880 881
}

882
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883 884
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
885
{
886
	pte_t *orig_src_pte, *orig_dst_pte;
L
Linus Torvalds 已提交
887
	pte_t *src_pte, *dst_pte;
H
Hugh Dickins 已提交
888
	spinlock_t *src_ptl, *dst_ptl;
889
	int progress = 0;
K
KAMEZAWA Hiroyuki 已提交
890
	int rss[NR_MM_COUNTERS];
H
Hugh Dickins 已提交
891
	swp_entry_t entry = (swp_entry_t){0};
L
Linus Torvalds 已提交
892 893

again:
K
KAMEZAWA Hiroyuki 已提交
894 895
	init_rss_vec(rss);

H
Hugh Dickins 已提交
896
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
L
Linus Torvalds 已提交
897 898
	if (!dst_pte)
		return -ENOMEM;
P
Peter Zijlstra 已提交
899
	src_pte = pte_offset_map(src_pmd, addr);
H
Hugh Dickins 已提交
900
	src_ptl = pte_lockptr(src_mm, src_pmd);
I
Ingo Molnar 已提交
901
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
902 903
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
904
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
905 906 907 908 909 910

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
911 912 913
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
N
Nick Piggin 已提交
914
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
915 916
				break;
		}
L
Linus Torvalds 已提交
917 918 919 920
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
H
Hugh Dickins 已提交
921 922 923 924
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
L
Linus Torvalds 已提交
925 926 927
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

928
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
929
	spin_unlock(src_ptl);
P
Peter Zijlstra 已提交
930
	pte_unmap(orig_src_pte);
K
KAMEZAWA Hiroyuki 已提交
931
	add_mm_rss_vec(dst_mm, rss);
932
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
H
Hugh Dickins 已提交
933
	cond_resched();
H
Hugh Dickins 已提交
934 935 936 937 938 939

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
L
Linus Torvalds 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
958 959
		if (pmd_trans_huge(*src_pmd)) {
			int err;
960
			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
961 962 963 964 965 966 967 968
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
L
Linus Torvalds 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
1007 1008 1009
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	bool is_cow;
A
Andrea Arcangeli 已提交
1010
	int ret;
L
Linus Torvalds 已提交
1011

1012 1013 1014 1015 1016 1017
	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
1018 1019 1020
	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
			!vma->anon_vma)
		return 0;
1021

L
Linus Torvalds 已提交
1022 1023 1024
	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

1025
	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1026 1027 1028 1029
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
1030
		ret = track_pfn_copy(vma);
1031 1032 1033 1034
		if (ret)
			return ret;
	}

A
Andrea Arcangeli 已提交
1035 1036 1037 1038 1039 1040
	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
1041 1042 1043 1044 1045 1046
	is_cow = is_cow_mapping(vma->vm_flags);
	mmun_start = addr;
	mmun_end   = end;
	if (is_cow)
		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
						    mmun_end);
A
Andrea Arcangeli 已提交
1047 1048

	ret = 0;
L
Linus Torvalds 已提交
1049 1050 1051 1052 1053 1054
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
A
Andrea Arcangeli 已提交
1055 1056 1057 1058 1059
		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
L
Linus Torvalds 已提交
1060
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
A
Andrea Arcangeli 已提交
1061

1062 1063
	if (is_cow)
		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1064
	return ret;
L
Linus Torvalds 已提交
1065 1066
}

1067
static unsigned long zap_pte_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1068
				struct vm_area_struct *vma, pmd_t *pmd,
L
Linus Torvalds 已提交
1069
				unsigned long addr, unsigned long end,
1070
				struct zap_details *details)
L
Linus Torvalds 已提交
1071
{
N
Nick Piggin 已提交
1072
	struct mm_struct *mm = tlb->mm;
P
Peter Zijlstra 已提交
1073
	int force_flush = 0;
K
KAMEZAWA Hiroyuki 已提交
1074
	int rss[NR_MM_COUNTERS];
1075
	spinlock_t *ptl;
1076
	pte_t *start_pte;
1077
	pte_t *pte;
1078
	swp_entry_t entry;
K
KAMEZAWA Hiroyuki 已提交
1079

P
Peter Zijlstra 已提交
1080
again:
1081
	init_rss_vec(rss);
1082 1083
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
1084
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1085 1086
	do {
		pte_t ptent = *pte;
1087
		if (pte_none(ptent)) {
L
Linus Torvalds 已提交
1088
			continue;
1089
		}
1090

L
Linus Torvalds 已提交
1091
		if (pte_present(ptent)) {
H
Hugh Dickins 已提交
1092
			struct page *page;
1093

1094
			page = vm_normal_page(vma, addr, ptent);
L
Linus Torvalds 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
			}
N
Nick Piggin 已提交
1105
			ptent = ptep_get_and_clear_full(mm, addr, pte,
1106
							tlb->fullmm);
L
Linus Torvalds 已提交
1107 1108 1109
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
1110 1111

			if (!PageAnon(page)) {
1112 1113
				if (pte_dirty(ptent)) {
					force_flush = 1;
1114
					set_page_dirty(page);
1115
				}
1116
				if (pte_young(ptent) &&
1117
				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1118
					mark_page_accessed(page);
1119
			}
1120
			rss[mm_counter(page)]--;
1121
			page_remove_rmap(page, false);
1122 1123
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
1124 1125
			if (unlikely(!__tlb_remove_page(tlb, page))) {
				force_flush = 1;
1126
				addr += PAGE_SIZE;
P
Peter Zijlstra 已提交
1127
				break;
1128
			}
L
Linus Torvalds 已提交
1129 1130
			continue;
		}
1131
		/* If details->check_mapping, we leave swap entries. */
L
Linus Torvalds 已提交
1132 1133
		if (unlikely(details))
			continue;
K
KAMEZAWA Hiroyuki 已提交
1134

1135 1136 1137 1138 1139
		entry = pte_to_swp_entry(ptent);
		if (!non_swap_entry(entry))
			rss[MM_SWAPENTS]--;
		else if (is_migration_entry(entry)) {
			struct page *page;
1140

1141
			page = migration_entry_to_page(entry);
1142
			rss[mm_counter(page)]--;
K
KAMEZAWA Hiroyuki 已提交
1143
		}
1144 1145
		if (unlikely(!free_swap_and_cache(entry)))
			print_bad_pte(vma, addr, ptent, NULL);
1146
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1147
	} while (pte++, addr += PAGE_SIZE, addr != end);
1148

K
KAMEZAWA Hiroyuki 已提交
1149
	add_mm_rss_vec(mm, rss);
1150
	arch_leave_lazy_mmu_mode();
1151

1152
	/* Do the actual TLB flush before dropping ptl */
1153
	if (force_flush)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		tlb_flush_mmu_tlbonly(tlb);
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * If we forced a TLB flush (either due to running out of
	 * batch buffers or because we needed to flush dirty TLB
	 * entries before releasing the ptl), free the batched
	 * memory too. Restart if we didn't do everything.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu_free(tlb);
1166 1167

		if (addr != end)
P
Peter Zijlstra 已提交
1168 1169 1170
			goto again;
	}

1171
	return addr;
L
Linus Torvalds 已提交
1172 1173
}

1174
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1175
				struct vm_area_struct *vma, pud_t *pud,
L
Linus Torvalds 已提交
1176
				unsigned long addr, unsigned long end,
1177
				struct zap_details *details)
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182 1183 1184
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
1185
		if (pmd_trans_huge(*pmd)) {
1186
			if (next - addr != HPAGE_PMD_SIZE) {
1187 1188 1189 1190 1191 1192 1193 1194 1195
#ifdef CONFIG_DEBUG_VM
				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
						__func__, addr, end,
						vma->vm_start,
						vma->vm_end);
					BUG();
				}
#endif
1196
				split_huge_pmd(vma, pmd, addr);
S
Shaohua Li 已提交
1197
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1198
				goto next;
1199 1200
			/* fall through */
		}
1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * Here there can be other concurrent MADV_DONTNEED or
		 * trans huge page faults running, and if the pmd is
		 * none or trans huge it can change under us. This is
		 * because MADV_DONTNEED holds the mmap_sem in read
		 * mode.
		 */
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto next;
1210
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1211
next:
1212 1213
		cond_resched();
	} while (pmd++, addr = next, addr != end);
1214 1215

	return addr;
L
Linus Torvalds 已提交
1216 1217
}

1218
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1219
				struct vm_area_struct *vma, pgd_t *pgd,
L
Linus Torvalds 已提交
1220
				unsigned long addr, unsigned long end,
1221
				struct zap_details *details)
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226 1227 1228
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
1229
		if (pud_none_or_clear_bad(pud))
L
Linus Torvalds 已提交
1230
			continue;
1231 1232
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
	} while (pud++, addr = next, addr != end);
1233 1234

	return addr;
L
Linus Torvalds 已提交
1235 1236
}

A
Al Viro 已提交
1237 1238 1239 1240
static void unmap_page_range(struct mmu_gather *tlb,
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
L
Linus Torvalds 已提交
1241 1242 1243 1244
{
	pgd_t *pgd;
	unsigned long next;

1245
	if (details && !details->check_mapping)
L
Linus Torvalds 已提交
1246 1247 1248 1249 1250 1251 1252
		details = NULL;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
1253
		if (pgd_none_or_clear_bad(pgd))
L
Linus Torvalds 已提交
1254
			continue;
1255 1256
		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
1257 1258
	tlb_end_vma(tlb, vma);
}
1259

1260 1261 1262

static void unmap_single_vma(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
1263
		unsigned long end_addr,
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		struct zap_details *details)
{
	unsigned long start = max(vma->vm_start, start_addr);
	unsigned long end;

	if (start >= vma->vm_end)
		return;
	end = min(vma->vm_end, end_addr);
	if (end <= vma->vm_start)
		return;

1275 1276 1277
	if (vma->vm_file)
		uprobe_munmap(vma, start, end);

1278
	if (unlikely(vma->vm_flags & VM_PFNMAP))
1279
		untrack_pfn(vma, 0, 0);
1280 1281 1282 1283 1284 1285 1286

	if (start != end) {
		if (unlikely(is_vm_hugetlb_page(vma))) {
			/*
			 * It is undesirable to test vma->vm_file as it
			 * should be non-null for valid hugetlb area.
			 * However, vm_file will be NULL in the error
1287
			 * cleanup path of mmap_region. When
1288
			 * hugetlbfs ->mmap method fails,
1289
			 * mmap_region() nullifies vma->vm_file
1290 1291 1292 1293
			 * before calling this function to clean up.
			 * Since no pte has actually been setup, it is
			 * safe to do nothing in this case.
			 */
1294
			if (vma->vm_file) {
1295
				i_mmap_lock_write(vma->vm_file->f_mapping);
1296
				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297
				i_mmap_unlock_write(vma->vm_file->f_mapping);
1298
			}
1299 1300 1301
		} else
			unmap_page_range(tlb, vma, start, end, details);
	}
L
Linus Torvalds 已提交
1302 1303 1304 1305
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
1306
 * @tlb: address of the caller's struct mmu_gather
L
Linus Torvalds 已提交
1307 1308 1309 1310
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 *
1311
 * Unmap all pages in the vma list.
L
Linus Torvalds 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
A
Al Viro 已提交
1322
void unmap_vmas(struct mmu_gather *tlb,
L
Linus Torvalds 已提交
1323
		struct vm_area_struct *vma, unsigned long start_addr,
1324
		unsigned long end_addr)
L
Linus Torvalds 已提交
1325
{
A
Andrea Arcangeli 已提交
1326
	struct mm_struct *mm = vma->vm_mm;
L
Linus Torvalds 已提交
1327

A
Andrea Arcangeli 已提交
1328
	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1329
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1330
		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
A
Andrea Arcangeli 已提交
1331
	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
L
Linus Torvalds 已提交
1332 1333 1334 1335 1336
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
1337
 * @start: starting address of pages to zap
L
Linus Torvalds 已提交
1338
 * @size: number of bytes to zap
1339
 * @details: details of shared cache invalidation
1340 1341
 *
 * Caller must protect the VMA list
L
Linus Torvalds 已提交
1342
 */
1343
void zap_page_range(struct vm_area_struct *vma, unsigned long start,
L
Linus Torvalds 已提交
1344 1345 1346
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1347
	struct mmu_gather tlb;
1348
	unsigned long end = start + size;
L
Linus Torvalds 已提交
1349 1350

	lru_add_drain();
1351
	tlb_gather_mmu(&tlb, mm, start, end);
1352
	update_hiwater_rss(mm);
1353 1354
	mmu_notifier_invalidate_range_start(mm, start, end);
	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1355
		unmap_single_vma(&tlb, vma, start, end, details);
1356 1357
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_finish_mmu(&tlb, start, end);
L
Linus Torvalds 已提交
1358 1359
}

1360 1361 1362 1363 1364
/**
 * zap_page_range_single - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
1365
 * @details: details of shared cache invalidation
1366 1367
 *
 * The range must fit into one VMA.
L
Linus Torvalds 已提交
1368
 */
1369
static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
L
Linus Torvalds 已提交
1370 1371 1372
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1373
	struct mmu_gather tlb;
L
Linus Torvalds 已提交
1374 1375 1376
	unsigned long end = address + size;

	lru_add_drain();
1377
	tlb_gather_mmu(&tlb, mm, address, end);
1378
	update_hiwater_rss(mm);
1379
	mmu_notifier_invalidate_range_start(mm, address, end);
1380
	unmap_single_vma(&tlb, vma, address, end, details);
1381
	mmu_notifier_invalidate_range_end(mm, address, end);
P
Peter Zijlstra 已提交
1382
	tlb_finish_mmu(&tlb, address, end);
L
Linus Torvalds 已提交
1383 1384
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 * Returns 0 if successful.
 */
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
		return -1;
1403
	zap_page_range_single(vma, address, size, NULL);
1404 1405 1406 1407
	return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

1408
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
H
Harvey Harrison 已提交
1409
			spinlock_t **ptl)
1410 1411 1412 1413
{
	pgd_t * pgd = pgd_offset(mm, addr);
	pud_t * pud = pud_alloc(mm, pgd, addr);
	if (pud) {
1414
		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1415 1416
		if (pmd) {
			VM_BUG_ON(pmd_trans_huge(*pmd));
1417
			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1418
		}
1419 1420 1421 1422
	}
	return NULL;
}

1423 1424 1425 1426 1427 1428 1429
/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
N
Nick Piggin 已提交
1430 1431
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
1432
{
N
Nick Piggin 已提交
1433
	struct mm_struct *mm = vma->vm_mm;
1434
	int retval;
1435
	pte_t *pte;
1436 1437
	spinlock_t *ptl;

1438
	retval = -EINVAL;
1439
	if (PageAnon(page))
1440
		goto out;
1441 1442
	retval = -ENOMEM;
	flush_dcache_page(page);
1443
	pte = get_locked_pte(mm, addr, &ptl);
1444
	if (!pte)
1445
		goto out;
1446 1447 1448 1449 1450 1451
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
1452
	inc_mm_counter_fast(mm, mm_counter_file(page));
1453 1454 1455 1456
	page_add_file_rmap(page);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
1457 1458
	pte_unmap_unlock(pte, ptl);
	return retval;
1459 1460 1461 1462 1463 1464
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

1465 1466 1467 1468 1469 1470
/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
1471 1472 1473 1474 1475 1476
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
N
Nick Piggin 已提交
1477
 * (see split_page()).
1478 1479 1480 1481 1482 1483 1484 1485
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
1486 1487 1488 1489 1490
 *
 * Usually this function is called from f_op->mmap() handler
 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 * Caller must set VM_MIXEDMAP on vma if it wants to call this
 * function from other places, for example from page-fault handler.
1491
 */
N
Nick Piggin 已提交
1492 1493
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
1494 1495 1496 1497 1498
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
1499 1500 1501 1502 1503
	if (!(vma->vm_flags & VM_MIXEDMAP)) {
		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
		BUG_ON(vma->vm_flags & VM_PFNMAP);
		vma->vm_flags |= VM_MIXEDMAP;
	}
N
Nick Piggin 已提交
1504
	return insert_page(vma, addr, page, vma->vm_page_prot);
1505
}
1506
EXPORT_SYMBOL(vm_insert_page);
1507

N
Nick Piggin 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t prot)
{
	struct mm_struct *mm = vma->vm_mm;
	int retval;
	pte_t *pte, entry;
	spinlock_t *ptl;

	retval = -ENOMEM;
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	entry = pte_mkspecial(pfn_pte(pfn, prot));
	set_pte_at(mm, addr, pte, entry);
1527
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
N
Nick Piggin 已提交
1528 1529 1530 1531 1532 1533 1534 1535

	retval = 0;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

N
Nick Piggin 已提交
1536 1537 1538 1539 1540 1541
/**
 * vm_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
1542
 * Similar to vm_insert_page, this allows drivers to insert individual pages
N
Nick Piggin 已提交
1543 1544 1545 1546
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return NULL.
N
Nick Piggin 已提交
1547 1548 1549 1550 1551
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
N
Nick Piggin 已提交
1552 1553
 */
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
N
Nick Piggin 已提交
1554
			unsigned long pfn)
N
Nick Piggin 已提交
1555
{
1556
	int ret;
1557
	pgprot_t pgprot = vma->vm_page_prot;
N
Nick Piggin 已提交
1558 1559 1560 1561 1562 1563
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
J
Jared Hulbert 已提交
1564 1565 1566 1567 1568
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
N
Nick Piggin 已提交
1569

N
Nick Piggin 已提交
1570 1571
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
1572
	if (track_pfn_insert(vma, &pgprot, pfn))
1573 1574
		return -EINVAL;

1575
	ret = insert_pfn(vma, addr, pfn, pgprot);
1576 1577

	return ret;
N
Nick Piggin 已提交
1578 1579
}
EXPORT_SYMBOL(vm_insert_pfn);
N
Nick Piggin 已提交
1580

N
Nick Piggin 已提交
1581 1582 1583 1584
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn)
{
	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
N
Nick Piggin 已提交
1585

N
Nick Piggin 已提交
1586 1587
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
N
Nick Piggin 已提交
1588

N
Nick Piggin 已提交
1589 1590 1591 1592
	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
H
Hugh Dickins 已提交
1593 1594
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
N
Nick Piggin 已提交
1595 1596 1597 1598 1599 1600 1601 1602
	 */
	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
		struct page *page;

		page = pfn_to_page(pfn);
		return insert_page(vma, addr, page, vma->vm_page_prot);
	}
	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
N
Nick Piggin 已提交
1603
}
N
Nick Piggin 已提交
1604
EXPORT_SYMBOL(vm_insert_mixed);
N
Nick Piggin 已提交
1605

L
Linus Torvalds 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
H
Hugh Dickins 已提交
1616
	spinlock_t *ptl;
L
Linus Torvalds 已提交
1617

H
Hugh Dickins 已提交
1618
	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
L
Linus Torvalds 已提交
1619 1620
	if (!pte)
		return -ENOMEM;
1621
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1622 1623
	do {
		BUG_ON(!pte_none(*pte));
N
Nick Piggin 已提交
1624
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
L
Linus Torvalds 已提交
1625 1626
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
1627
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
1628
	pte_unmap_unlock(pte - 1, ptl);
L
Linus Torvalds 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
1643
	VM_BUG_ON(pmd_trans_huge(*pmd));
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
1688
	unsigned long end = addr + PAGE_ALIGN(size);
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695 1696
	struct mm_struct *mm = vma->vm_mm;
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
1697 1698 1699
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
1700 1701 1702 1703
	 *   VM_DONTEXPAND
	 *      Disable vma merging and expanding with mremap().
	 *   VM_DONTDUMP
	 *      Omit vma from core dump, even when VM_IO turned off.
L
Linus Torvalds 已提交
1704 1705 1706 1707
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1708
	 * See vm_normal_page() for details.
L
Linus Torvalds 已提交
1709
	 */
1710 1711 1712
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
L
Linus Torvalds 已提交
1713
		vma->vm_pgoff = pfn;
1714 1715 1716 1717
	}

	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
	if (err)
1718
		return -EINVAL;
L
Linus Torvalds 已提交
1719

1720
	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1733 1734

	if (err)
1735
		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1736

L
Linus Torvalds 已提交
1737 1738 1739 1740
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/**
 * vm_iomap_memory - remap memory to userspace
 * @vma: user vma to map to
 * @start: start of area
 * @len: size of area
 *
 * This is a simplified io_remap_pfn_range() for common driver use. The
 * driver just needs to give us the physical memory range to be mapped,
 * we'll figure out the rest from the vma information.
 *
 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
 * whatever write-combining details or similar.
 */
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
	unsigned long vm_len, pfn, pages;

	/* Check that the physical memory area passed in looks valid */
	if (start + len < start)
		return -EINVAL;
	/*
	 * You *really* shouldn't map things that aren't page-aligned,
	 * but we've historically allowed it because IO memory might
	 * just have smaller alignment.
	 */
	len += start & ~PAGE_MASK;
	pfn = start >> PAGE_SHIFT;
	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
	if (pfn + pages < pfn)
		return -EINVAL;

	/* We start the mapping 'vm_pgoff' pages into the area */
	if (vma->vm_pgoff > pages)
		return -EINVAL;
	pfn += vma->vm_pgoff;
	pages -= vma->vm_pgoff;

	/* Can we fit all of the mapping? */
	vm_len = vma->vm_end - vma->vm_start;
	if (vm_len >> PAGE_SHIFT > pages)
		return -EINVAL;

	/* Ok, let it rip */
	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);

1788 1789 1790 1791 1792 1793
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pte_t *pte;
	int err;
1794
	pgtable_t token;
1795
	spinlock_t *uninitialized_var(ptl);
1796 1797 1798 1799 1800 1801 1802 1803 1804

	pte = (mm == &init_mm) ?
		pte_alloc_kernel(pmd, addr) :
		pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;

	BUG_ON(pmd_huge(*pmd));

1805 1806
	arch_enter_lazy_mmu_mode();

1807
	token = pmd_pgtable(*pmd);
1808 1809

	do {
1810
		err = fn(pte++, token, addr, data);
1811 1812
		if (err)
			break;
1813
	} while (addr += PAGE_SIZE, addr != end);
1814

1815 1816
	arch_leave_lazy_mmu_mode();

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pmd_t *pmd;
	unsigned long next;
	int err;

A
Andi Kleen 已提交
1830 1831
	BUG_ON(pud_huge(*pud));

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);
	return err;
}

static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pud_t *pud;
	unsigned long next;
	int err;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
		if (err)
			break;
	} while (pud++, addr = next, addr != end);
	return err;
}

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	pgd_t *pgd;
	unsigned long next;
1873
	unsigned long end = addr + size;
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	int err;

	BUG_ON(addr >= end);
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1884

1885 1886 1887 1888
	return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

1889
/*
1890 1891 1892 1893 1894
 * handle_pte_fault chooses page fault handler according to an entry which was
 * read non-atomically.  Before making any commitment, on those architectures
 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
 * parts, do_swap_page must check under lock before unmapping the pte and
 * proceeding (but do_wp_page is only called after already making such a check;
1895
 * and do_anonymous_page can safely check later on).
1896
 */
H
Hugh Dickins 已提交
1897
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1898 1899 1900 1901 1902
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
H
Hugh Dickins 已提交
1903 1904
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
1905
		same = pte_same(*page_table, orig_pte);
H
Hugh Dickins 已提交
1906
		spin_unlock(ptl);
1907 1908 1909 1910 1911 1912
	}
#endif
	pte_unmap(page_table);
	return same;
}

1913
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1914
{
1915 1916
	debug_dma_assert_idle(src);

1917 1918 1919 1920 1921 1922 1923
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
1924
		void *kaddr = kmap_atomic(dst);
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1934
			clear_page(kaddr);
1935
		kunmap_atomic(kaddr);
1936
		flush_dcache_page(dst);
N
Nick Piggin 已提交
1937 1938
	} else
		copy_user_highpage(dst, src, va, vma);
1939 1940
}

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
{
	struct file *vm_file = vma->vm_file;

	if (vm_file)
		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;

	/*
	 * Special mappings (e.g. VDSO) do not have any file so fake
	 * a default GFP_KERNEL for them.
	 */
	return GFP_KERNEL;
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
/*
 * Notify the address space that the page is about to become writable so that
 * it can prohibit this or wait for the page to get into an appropriate state.
 *
 * We do this without the lock held, so that it can sleep if it needs to.
 */
static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
	       unsigned long address)
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = page->index;
	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1970
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1971
	vmf.page = page;
1972
	vmf.cow_page = NULL;
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
		return ret;
	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
		lock_page(page);
		if (!page->mapping) {
			unlock_page(page);
			return 0; /* retry */
		}
		ret |= VM_FAULT_LOCKED;
	} else
		VM_BUG_ON_PAGE(!PageLocked(page), page);
	return ret;
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/*
 * Handle write page faults for pages that can be reused in the current vma
 *
 * This can happen either due to the mapping being with the VM_SHARED flag,
 * or due to us being the last reference standing to the page. In either
 * case, all we need to do here is to mark the page as writable and update
 * any related book-keeping.
 */
static inline int wp_page_reuse(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			struct page *page, int page_mkwrite,
			int dirty_shared)
	__releases(ptl)
{
	pte_t entry;
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

	flush_cache_page(vma, address, pte_pfn(orig_pte));
	entry = pte_mkyoung(orig_pte);
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
		update_mmu_cache(vma, address, page_table);
	pte_unmap_unlock(page_table, ptl);

	if (dirty_shared) {
		struct address_space *mapping;
		int dirtied;

		if (!page_mkwrite)
			lock_page(page);

		dirtied = set_page_dirty(page);
		VM_BUG_ON_PAGE(PageAnon(page), page);
		mapping = page->mapping;
		unlock_page(page);
		page_cache_release(page);

		if ((dirtied || page_mkwrite) && mapping) {
			/*
			 * Some device drivers do not set page.mapping
			 * but still dirty their pages
			 */
			balance_dirty_pages_ratelimited(mapping);
		}

		if (!page_mkwrite)
			file_update_time(vma->vm_file);
	}

	return VM_FAULT_WRITE;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
/*
 * Handle the case of a page which we actually need to copy to a new page.
 *
 * Called with mmap_sem locked and the old page referenced, but
 * without the ptl held.
 *
 * High level logic flow:
 *
 * - Allocate a page, copy the content of the old page to the new one.
 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
 * - Take the PTL. If the pte changed, bail out and release the allocated page
 * - If the pte is still the way we remember it, update the page table and all
 *   relevant references. This includes dropping the reference the page-table
 *   held to the old page, as well as updating the rmap.
 * - In any case, unlock the PTL and drop the reference we took to the old page.
 */
static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *page_table, pmd_t *pmd,
			pte_t orig_pte, struct page *old_page)
{
	struct page *new_page = NULL;
	spinlock_t *ptl = NULL;
	pte_t entry;
	int page_copied = 0;
	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
	struct mem_cgroup *memcg;

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

	if (is_zero_pfn(pte_pfn(orig_pte))) {
		new_page = alloc_zeroed_user_highpage_movable(vma, address);
		if (!new_page)
			goto oom;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
		if (!new_page)
			goto oom;
		cow_user_page(new_page, old_page, address, vma);
	}

2090
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2091 2092
		goto oom_free_new;

2093 2094
	__SetPageUptodate(new_page);

2095 2096 2097 2098 2099 2100 2101 2102 2103
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

	/*
	 * Re-check the pte - we dropped the lock
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (likely(pte_same(*page_table, orig_pte))) {
		if (old_page) {
			if (!PageAnon(old_page)) {
2104 2105
				dec_mm_counter_fast(mm,
						mm_counter_file(old_page));
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		}
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
		ptep_clear_flush_notify(vma, address, page_table);
2121
		page_add_new_anon_rmap(new_page, vma, address, false);
2122
		mem_cgroup_commit_charge(new_page, memcg, false, false);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		lru_cache_add_active_or_unevictable(new_page, vma);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
		set_pte_at_notify(mm, address, page_table, entry);
		update_mmu_cache(vma, address, page_table);
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
2154
			page_remove_rmap(old_page, false);
2155 2156 2157 2158 2159 2160
		}

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	} else {
2161
		mem_cgroup_cancel_charge(new_page, memcg, false);
2162 2163 2164 2165 2166 2167 2168
	}

	if (new_page)
		page_cache_release(new_page);

	pte_unmap_unlock(page_table, ptl);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2169 2170
	/* THP pages are never mlocked */
	if (old_page && !PageTransCompound(old_page)) {
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
			munlock_vma_page(old_page);
			unlock_page(old_page);
		}
		page_cache_release(old_page);
	}
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
	page_cache_release(new_page);
oom:
	if (old_page)
		page_cache_release(old_page);
	return VM_FAULT_OOM;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/*
 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
 * mapping
 */
static int wp_pfn_shared(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			pmd_t *pmd)
{
	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
		struct vm_fault vmf = {
			.page = NULL,
			.pgoff = linear_page_index(vma, address),
			.virtual_address = (void __user *)(address & PAGE_MASK),
			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
		};
		int ret;

		pte_unmap_unlock(page_table, ptl);
		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
		if (ret & VM_FAULT_ERROR)
			return ret;
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
		/*
		 * We might have raced with another page fault while we
		 * released the pte_offset_map_lock.
		 */
		if (!pte_same(*page_table, orig_pte)) {
			pte_unmap_unlock(page_table, ptl);
			return 0;
		}
	}
	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
			     NULL, 0, 0);
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
			  unsigned long address, pte_t *page_table,
			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
			  struct page *old_page)
	__releases(ptl)
{
	int page_mkwrite = 0;

	page_cache_get(old_page);

	/*
	 * Only catch write-faults on shared writable pages,
	 * read-only shared pages can get COWed by
	 * get_user_pages(.write=1, .force=1).
	 */
	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
		int tmp;

		pte_unmap_unlock(page_table, ptl);
		tmp = do_page_mkwrite(vma, old_page, address);
		if (unlikely(!tmp || (tmp &
				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
			page_cache_release(old_page);
			return tmp;
		}
		/*
		 * Since we dropped the lock we need to revalidate
		 * the PTE as someone else may have changed it.  If
		 * they did, we just return, as we can count on the
		 * MMU to tell us if they didn't also make it writable.
		 */
		page_table = pte_offset_map_lock(mm, pmd, address,
						 &ptl);
		if (!pte_same(*page_table, orig_pte)) {
			unlock_page(old_page);
			pte_unmap_unlock(page_table, ptl);
			page_cache_release(old_page);
			return 0;
		}
		page_mkwrite = 1;
	}

	return wp_page_reuse(mm, vma, address, page_table, ptl,
			     orig_pte, old_page, page_mkwrite, 1);
}

L
Linus Torvalds 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
2287 2288 2289
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2290
 */
2291 2292
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2293
		spinlock_t *ptl, pte_t orig_pte)
2294
	__releases(ptl)
L
Linus Torvalds 已提交
2295
{
2296
	struct page *old_page;
L
Linus Torvalds 已提交
2297

2298
	old_page = vm_normal_page(vma, address, orig_pte);
2299 2300
	if (!old_page) {
		/*
2301 2302
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
2303 2304
		 *
		 * We should not cow pages in a shared writeable mapping.
2305
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2306 2307 2308
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
2309 2310
			return wp_pfn_shared(mm, vma, address, page_table, ptl,
					     orig_pte, pmd);
2311 2312 2313 2314

		pte_unmap_unlock(page_table, ptl);
		return wp_page_copy(mm, vma, address, page_table, pmd,
				    orig_pte, old_page);
2315
	}
L
Linus Torvalds 已提交
2316

2317
	/*
P
Peter Zijlstra 已提交
2318 2319
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
2320
	 */
H
Hugh Dickins 已提交
2321
	if (PageAnon(old_page) && !PageKsm(old_page)) {
2322 2323 2324 2325 2326 2327 2328 2329
		if (!trylock_page(old_page)) {
			page_cache_get(old_page);
			pte_unmap_unlock(page_table, ptl);
			lock_page(old_page);
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte)) {
				unlock_page(old_page);
2330 2331 2332
				pte_unmap_unlock(page_table, ptl);
				page_cache_release(old_page);
				return 0;
2333 2334
			}
			page_cache_release(old_page);
P
Peter Zijlstra 已提交
2335
		}
2336
		if (reuse_swap_page(old_page)) {
2337 2338 2339 2340 2341 2342
			/*
			 * The page is all ours.  Move it to our anon_vma so
			 * the rmap code will not search our parent or siblings.
			 * Protected against the rmap code by the page lock.
			 */
			page_move_anon_rmap(old_page, vma, address);
2343
			unlock_page(old_page);
2344 2345
			return wp_page_reuse(mm, vma, address, page_table, ptl,
					     orig_pte, old_page, 0, 0);
2346
		}
2347
		unlock_page(old_page);
P
Peter Zijlstra 已提交
2348
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2349
					(VM_WRITE|VM_SHARED))) {
2350 2351
		return wp_page_shared(mm, vma, address, page_table, pmd,
				      ptl, orig_pte, old_page);
L
Linus Torvalds 已提交
2352 2353 2354 2355 2356
	}

	/*
	 * Ok, we need to copy. Oh, well..
	 */
N
Nick Piggin 已提交
2357
	page_cache_get(old_page);
2358

2359
	pte_unmap_unlock(page_table, ptl);
2360 2361
	return wp_page_copy(mm, vma, address, page_table, pmd,
			    orig_pte, old_page);
L
Linus Torvalds 已提交
2362 2363
}

2364
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
L
Linus Torvalds 已提交
2365 2366 2367
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
2368
	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
L
Linus Torvalds 已提交
2369 2370
}

2371
static inline void unmap_mapping_range_tree(struct rb_root *root,
L
Linus Torvalds 已提交
2372 2373 2374 2375 2376
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	pgoff_t vba, vea, zba, zea;

2377
	vma_interval_tree_foreach(vma, root,
L
Linus Torvalds 已提交
2378 2379 2380
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
2381
		vea = vba + vma_pages(vma) - 1;
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386 2387 2388 2389
		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

2390
		unmap_mapping_range_vma(vma,
L
Linus Torvalds 已提交
2391 2392
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2393
				details);
L
Linus Torvalds 已提交
2394 2395 2396 2397
	}
}

/**
2398 2399 2400 2401
 * unmap_mapping_range - unmap the portion of all mmaps in the specified
 * address_space corresponding to the specified page range in the underlying
 * file.
 *
M
Martin Waitz 已提交
2402
 * @mapping: the address space containing mmaps to be unmapped.
L
Linus Torvalds 已提交
2403 2404
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
N
npiggin@suse.de 已提交
2405
 * boundary.  Note that this is different from truncate_pagecache(), which
L
Linus Torvalds 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	struct zap_details details;
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;

R
Ross Zwisler 已提交
2435 2436

	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2437
	i_mmap_lock_write(mapping);
2438
	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
L
Linus Torvalds 已提交
2439
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2440
	i_mmap_unlock_write(mapping);
L
Linus Torvalds 已提交
2441 2442 2443 2444
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
2445 2446
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
2447 2448 2449 2450
 * We return with pte unmapped and unlocked.
 *
 * We return with the mmap_sem locked or unlocked in the same cases
 * as does filemap_fault().
L
Linus Torvalds 已提交
2451
 */
2452 2453
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2454
		unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
2455
{
2456
	spinlock_t *ptl;
2457
	struct page *page, *swapcache;
2458
	struct mem_cgroup *memcg;
2459
	swp_entry_t entry;
L
Linus Torvalds 已提交
2460
	pte_t pte;
2461
	int locked;
2462
	int exclusive = 0;
N
Nick Piggin 已提交
2463
	int ret = 0;
L
Linus Torvalds 已提交
2464

H
Hugh Dickins 已提交
2465
	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2466
		goto out;
2467 2468

	entry = pte_to_swp_entry(orig_pte);
2469 2470 2471 2472 2473 2474 2475
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
			migration_entry_wait(mm, pmd, address);
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
			print_bad_pte(vma, address, orig_pte, NULL);
H
Hugh Dickins 已提交
2476
			ret = VM_FAULT_SIGBUS;
2477
		}
2478 2479
		goto out;
	}
2480
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
L
Linus Torvalds 已提交
2481 2482
	page = lookup_swap_cache(entry);
	if (!page) {
2483 2484
		page = swapin_readahead(entry,
					GFP_HIGHUSER_MOVABLE, vma, address);
L
Linus Torvalds 已提交
2485 2486
		if (!page) {
			/*
2487 2488
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
L
Linus Torvalds 已提交
2489
			 */
2490
			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
L
Linus Torvalds 已提交
2491 2492
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
2493
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2494
			goto unlock;
L
Linus Torvalds 已提交
2495 2496 2497 2498
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
2499
		count_vm_event(PGMAJFAULT);
2500
		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2501
	} else if (PageHWPoison(page)) {
2502 2503 2504 2505
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
2506 2507
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2508
		swapcache = page;
2509
		goto out_release;
L
Linus Torvalds 已提交
2510 2511
	}

2512
	swapcache = page;
2513
	locked = lock_page_or_retry(page, mm, flags);
R
Rik van Riel 已提交
2514

2515
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2516 2517 2518 2519
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}
2520

A
Andrea Arcangeli 已提交
2521
	/*
2522 2523 2524 2525
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
A
Andrea Arcangeli 已提交
2526
	 */
2527
	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
A
Andrea Arcangeli 已提交
2528 2529
		goto out_page;

2530 2531 2532 2533 2534
	page = ksm_might_need_to_copy(page, vma, address);
	if (unlikely(!page)) {
		ret = VM_FAULT_OOM;
		page = swapcache;
		goto out_page;
H
Hugh Dickins 已提交
2535 2536
	}

2537
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2538
		ret = VM_FAULT_OOM;
2539
		goto out_page;
2540 2541
	}

L
Linus Torvalds 已提交
2542
	/*
2543
	 * Back out if somebody else already faulted in this pte.
L
Linus Torvalds 已提交
2544
	 */
2545
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2546
	if (unlikely(!pte_same(*page_table, orig_pte)))
2547 2548 2549 2550 2551
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
L
Linus Torvalds 已提交
2552 2553
	}

2554 2555 2556 2557 2558 2559 2560 2561 2562
	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 */
L
Linus Torvalds 已提交
2563

2564
	inc_mm_counter_fast(mm, MM_ANONPAGES);
K
KAMEZAWA Hiroyuki 已提交
2565
	dec_mm_counter_fast(mm, MM_SWAPENTS);
L
Linus Torvalds 已提交
2566
	pte = mk_pte(page, vma->vm_page_prot);
2567
	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
L
Linus Torvalds 已提交
2568
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2569
		flags &= ~FAULT_FLAG_WRITE;
2570
		ret |= VM_FAULT_WRITE;
2571
		exclusive = RMAP_EXCLUSIVE;
L
Linus Torvalds 已提交
2572 2573
	}
	flush_icache_page(vma, page);
2574 2575
	if (pte_swp_soft_dirty(orig_pte))
		pte = pte_mksoft_dirty(pte);
L
Linus Torvalds 已提交
2576
	set_pte_at(mm, address, page_table, pte);
2577
	if (page == swapcache) {
2578
		do_page_add_anon_rmap(page, vma, address, exclusive);
2579
		mem_cgroup_commit_charge(page, memcg, true, false);
2580
	} else { /* ksm created a completely new copy */
2581
		page_add_new_anon_rmap(page, vma, address, false);
2582
		mem_cgroup_commit_charge(page, memcg, false, false);
2583 2584
		lru_cache_add_active_or_unevictable(page, vma);
	}
L
Linus Torvalds 已提交
2585

2586
	swap_free(entry);
N
Nick Piggin 已提交
2587
	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2588
		try_to_free_swap(page);
2589
	unlock_page(page);
2590
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2602

2603
	if (flags & FAULT_FLAG_WRITE) {
2604 2605 2606
		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
L
Linus Torvalds 已提交
2607 2608 2609 2610
		goto out;
	}

	/* No need to invalidate - it was non-present before */
2611
	update_mmu_cache(vma, address, page_table);
2612
unlock:
2613
	pte_unmap_unlock(page_table, ptl);
L
Linus Torvalds 已提交
2614 2615
out:
	return ret;
2616
out_nomap:
2617
	mem_cgroup_cancel_charge(page, memcg, false);
2618
	pte_unmap_unlock(page_table, ptl);
2619
out_page:
2620
	unlock_page(page);
2621
out_release:
2622
	page_cache_release(page);
2623
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2624 2625 2626
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2627
	return ret;
L
Linus Torvalds 已提交
2628 2629
}

2630
/*
2631 2632
 * This is like a special single-page "expand_{down|up}wards()",
 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2633 2634 2635 2636 2637 2638
 * doesn't hit another vma.
 */
static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
{
	address &= PAGE_MASK;
	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
		struct vm_area_struct *prev = vma->vm_prev;

		/*
		 * Is there a mapping abutting this one below?
		 *
		 * That's only ok if it's the same stack mapping
		 * that has gotten split..
		 */
		if (prev && prev->vm_end == address)
			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2649

2650
		return expand_downwards(vma, address - PAGE_SIZE);
2651
	}
2652 2653 2654 2655 2656 2657 2658
	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
		struct vm_area_struct *next = vma->vm_next;

		/* As VM_GROWSDOWN but s/below/above/ */
		if (next && next->vm_start == address + PAGE_SIZE)
			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;

2659
		return expand_upwards(vma, address + PAGE_SIZE);
2660
	}
2661 2662 2663
	return 0;
}

L
Linus Torvalds 已提交
2664
/*
2665 2666 2667
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2668
 */
2669 2670
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2671
		unsigned int flags)
L
Linus Torvalds 已提交
2672
{
2673
	struct mem_cgroup *memcg;
2674 2675
	struct page *page;
	spinlock_t *ptl;
L
Linus Torvalds 已提交
2676 2677
	pte_t entry;

2678 2679
	pte_unmap(page_table);

2680 2681 2682 2683
	/* File mapping without ->vm_ops ? */
	if (vma->vm_flags & VM_SHARED)
		return VM_FAULT_SIGBUS;

2684 2685
	/* Check if we need to add a guard page to the stack */
	if (check_stack_guard_page(vma, address) < 0)
2686
		return VM_FAULT_SIGSEGV;
2687

2688
	/* Use the zero-page for reads */
2689
	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
H
Hugh Dickins 已提交
2690 2691
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
						vma->vm_page_prot));
2692
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2693 2694
		if (!pte_none(*page_table))
			goto unlock;
2695 2696 2697 2698 2699 2700
		/* Deliver the page fault to userland, check inside PT lock */
		if (userfaultfd_missing(vma)) {
			pte_unmap_unlock(page_table, ptl);
			return handle_userfault(vma, address, flags,
						VM_UFFD_MISSING);
		}
H
Hugh Dickins 已提交
2701 2702 2703
		goto setpte;
	}

N
Nick Piggin 已提交
2704 2705 2706 2707 2708 2709
	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
	page = alloc_zeroed_user_highpage_movable(vma, address);
	if (!page)
		goto oom;
2710

2711
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2712 2713
		goto oom_free_page;

2714 2715 2716 2717 2718
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceeding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
N
Nick Piggin 已提交
2719
	__SetPageUptodate(page);
2720

N
Nick Piggin 已提交
2721
	entry = mk_pte(page, vma->vm_page_prot);
H
Hugh Dickins 已提交
2722 2723
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));
L
Linus Torvalds 已提交
2724

N
Nick Piggin 已提交
2725
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2726
	if (!pte_none(*page_table))
N
Nick Piggin 已提交
2727
		goto release;
H
Hugh Dickins 已提交
2728

2729 2730 2731
	/* Deliver the page fault to userland, check inside PT lock */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(page_table, ptl);
2732
		mem_cgroup_cancel_charge(page, memcg, false);
2733 2734 2735 2736 2737
		page_cache_release(page);
		return handle_userfault(vma, address, flags,
					VM_UFFD_MISSING);
	}

2738
	inc_mm_counter_fast(mm, MM_ANONPAGES);
2739
	page_add_new_anon_rmap(page, vma, address, false);
2740
	mem_cgroup_commit_charge(page, memcg, false, false);
2741
	lru_cache_add_active_or_unevictable(page, vma);
H
Hugh Dickins 已提交
2742
setpte:
2743
	set_pte_at(mm, address, page_table, entry);
L
Linus Torvalds 已提交
2744 2745

	/* No need to invalidate - it was non-present before */
2746
	update_mmu_cache(vma, address, page_table);
2747
unlock:
2748
	pte_unmap_unlock(page_table, ptl);
N
Nick Piggin 已提交
2749
	return 0;
2750
release:
2751
	mem_cgroup_cancel_charge(page, memcg, false);
2752 2753
	page_cache_release(page);
	goto unlock;
2754
oom_free_page:
2755
	page_cache_release(page);
2756
oom:
L
Linus Torvalds 已提交
2757 2758 2759
	return VM_FAULT_OOM;
}

2760 2761 2762 2763 2764
/*
 * The mmap_sem must have been held on entry, and may have been
 * released depending on flags and vma->vm_ops->fault() return value.
 * See filemap_fault() and __lock_page_retry().
 */
2765
static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2766 2767
			pgoff_t pgoff, unsigned int flags,
			struct page *cow_page, struct page **page)
2768 2769 2770 2771 2772 2773 2774 2775
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = pgoff;
	vmf.flags = flags;
	vmf.page = NULL;
2776
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2777
	vmf.cow_page = cow_page;
2778 2779 2780 2781

	ret = vma->vm_ops->fault(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;
2782 2783
	if (!vmf.page)
		goto out;
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

	if (unlikely(PageHWPoison(vmf.page))) {
		if (ret & VM_FAULT_LOCKED)
			unlock_page(vmf.page);
		page_cache_release(vmf.page);
		return VM_FAULT_HWPOISON;
	}

	if (unlikely(!(ret & VM_FAULT_LOCKED)))
		lock_page(vmf.page);
	else
		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);

2797
 out:
2798 2799 2800 2801
	*page = vmf.page;
	return ret;
}

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
/**
 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
 *
 * @vma: virtual memory area
 * @address: user virtual address
 * @page: page to map
 * @pte: pointer to target page table entry
 * @write: true, if new entry is writable
 * @anon: true, if it's anonymous page
 *
 * Caller must hold page table lock relevant for @pte.
 *
 * Target users are page handler itself and implementations of
 * vm_ops->map_pages.
 */
void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		struct page *page, pte_t *pte, bool write, bool anon)
{
	pte_t entry;

	flush_icache_page(vma, page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write)
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (anon) {
		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2828
		page_add_new_anon_rmap(page, vma, address, false);
2829
	} else {
2830
		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2831 2832 2833 2834 2835 2836 2837 2838
		page_add_file_rmap(page);
	}
	set_pte_at(vma->vm_mm, address, pte, entry);

	/* no need to invalidate: a not-present page won't be cached */
	update_mmu_cache(vma, address, pte);
}

2839 2840
static unsigned long fault_around_bytes __read_mostly =
	rounddown_pow_of_two(65536);
2841 2842 2843

#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
2844
{
2845
	*val = fault_around_bytes;
2846 2847 2848
	return 0;
}

2849 2850 2851 2852 2853
/*
 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
 * rounded down to nearest page order. It's what do_fault_around() expects to
 * see.
 */
2854
static int fault_around_bytes_set(void *data, u64 val)
2855
{
2856
	if (val / PAGE_SIZE > PTRS_PER_PTE)
2857
		return -EINVAL;
2858 2859 2860 2861
	if (val > PAGE_SIZE)
		fault_around_bytes = rounddown_pow_of_two(val);
	else
		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2862 2863
	return 0;
}
2864 2865
DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2866 2867 2868 2869 2870

static int __init fault_around_debugfs(void)
{
	void *ret;

2871 2872
	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
			&fault_around_bytes_fops);
2873
	if (!ret)
2874
		pr_warn("Failed to create fault_around_bytes in debugfs");
2875 2876 2877 2878
	return 0;
}
late_initcall(fault_around_debugfs);
#endif
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
/*
 * do_fault_around() tries to map few pages around the fault address. The hope
 * is that the pages will be needed soon and this will lower the number of
 * faults to handle.
 *
 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
 * not ready to be mapped: not up-to-date, locked, etc.
 *
 * This function is called with the page table lock taken. In the split ptlock
 * case the page table lock only protects only those entries which belong to
 * the page table corresponding to the fault address.
 *
 * This function doesn't cross the VMA boundaries, in order to call map_pages()
 * only once.
 *
 * fault_around_pages() defines how many pages we'll try to map.
 * do_fault_around() expects it to return a power of two less than or equal to
 * PTRS_PER_PTE.
 *
 * The virtual address of the area that we map is naturally aligned to the
 * fault_around_pages() value (and therefore to page order).  This way it's
 * easier to guarantee that we don't cross page table boundaries.
 */
2903 2904 2905
static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, pgoff_t pgoff, unsigned int flags)
{
2906
	unsigned long start_addr, nr_pages, mask;
2907 2908 2909 2910
	pgoff_t max_pgoff;
	struct vm_fault vmf;
	int off;

2911
	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2912 2913 2914
	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

	start_addr = max(address & mask, vma->vm_start);
2915 2916 2917 2918 2919 2920
	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	pte -= off;
	pgoff -= off;

	/*
	 *  max_pgoff is either end of page table or end of vma
2921
	 *  or fault_around_pages() from pgoff, depending what is nearest.
2922 2923 2924 2925
	 */
	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
		PTRS_PER_PTE - 1;
	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2926
			pgoff + nr_pages - 1);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

	/* Check if it makes any sense to call ->map_pages */
	while (!pte_none(*pte)) {
		if (++pgoff > max_pgoff)
			return;
		start_addr += PAGE_SIZE;
		if (start_addr >= vma->vm_end)
			return;
		pte++;
	}

	vmf.virtual_address = (void __user *) start_addr;
	vmf.pte = pte;
	vmf.pgoff = pgoff;
	vmf.max_pgoff = max_pgoff;
	vmf.flags = flags;
2943
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2944 2945 2946
	vma->vm_ops->map_pages(vma, &vmf);
}

2947 2948 2949 2950 2951 2952
static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page;
	spinlock_t *ptl;
2953
	pte_t *pte;
2954 2955 2956 2957 2958 2959 2960
	int ret = 0;

	/*
	 * Let's call ->map_pages() first and use ->fault() as fallback
	 * if page by the offset is not ready to be mapped (cold cache or
	 * something).
	 */
2961
	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2962 2963 2964 2965 2966 2967
		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
		do_fault_around(vma, address, pte, pgoff, flags);
		if (!pte_same(*pte, orig_pte))
			goto unlock_out;
		pte_unmap_unlock(pte, ptl);
	}
2968

2969
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
	}
2980
	do_set_pte(vma, address, fault_page, pte, false, false);
2981
	unlock_page(fault_page);
2982 2983
unlock_out:
	pte_unmap_unlock(pte, ptl);
2984 2985 2986
	return ret;
}

2987 2988 2989 2990 2991
static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page, *new_page;
2992
	struct mem_cgroup *memcg;
2993
	spinlock_t *ptl;
2994
	pte_t *pte;
2995 2996 2997 2998 2999 3000 3001 3002 3003
	int ret;

	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
	if (!new_page)
		return VM_FAULT_OOM;

3004
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3005 3006 3007 3008
		page_cache_release(new_page);
		return VM_FAULT_OOM;
	}

3009
	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3010 3011 3012
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;

3013 3014
	if (fault_page)
		copy_user_highpage(new_page, fault_page, address, vma);
3015 3016 3017 3018 3019
	__SetPageUptodate(new_page);

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
3020 3021 3022 3023 3024 3025
		if (fault_page) {
			unlock_page(fault_page);
			page_cache_release(fault_page);
		} else {
			/*
			 * The fault handler has no page to lock, so it holds
3026
			 * i_mmap_lock for read to protect against truncate.
3027
			 */
3028
			i_mmap_unlock_read(vma->vm_file->f_mapping);
3029
		}
3030 3031
		goto uncharge_out;
	}
3032
	do_set_pte(vma, address, new_page, pte, true, true);
3033
	mem_cgroup_commit_charge(new_page, memcg, false, false);
3034
	lru_cache_add_active_or_unevictable(new_page, vma);
3035
	pte_unmap_unlock(pte, ptl);
3036 3037 3038 3039 3040 3041
	if (fault_page) {
		unlock_page(fault_page);
		page_cache_release(fault_page);
	} else {
		/*
		 * The fault handler has no page to lock, so it holds
3042
		 * i_mmap_lock for read to protect against truncate.
3043
		 */
3044
		i_mmap_unlock_read(vma->vm_file->f_mapping);
3045
	}
3046 3047
	return ret;
uncharge_out:
3048
	mem_cgroup_cancel_charge(new_page, memcg, false);
3049 3050 3051 3052
	page_cache_release(new_page);
	return ret;
}

3053
static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3054
		unsigned long address, pmd_t *pmd,
3055
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
3056
{
3057 3058
	struct page *fault_page;
	struct address_space *mapping;
3059
	spinlock_t *ptl;
3060
	pte_t *pte;
3061 3062
	int dirtied = 0;
	int ret, tmp;
3063

3064
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3065
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3066
		return ret;
L
Linus Torvalds 已提交
3067 3068

	/*
3069 3070
	 * Check if the backing address space wants to know that the page is
	 * about to become writable
L
Linus Torvalds 已提交
3071
	 */
3072 3073 3074 3075 3076
	if (vma->vm_ops->page_mkwrite) {
		unlock_page(fault_page);
		tmp = do_page_mkwrite(vma, fault_page, address);
		if (unlikely(!tmp ||
				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3077
			page_cache_release(fault_page);
3078
			return tmp;
3079
		}
3080 3081
	}

3082 3083 3084 3085 3086 3087
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
L
Linus Torvalds 已提交
3088
	}
3089
	do_set_pte(vma, address, fault_page, pte, true, false);
3090
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3091

3092 3093
	if (set_page_dirty(fault_page))
		dirtied = 1;
3094 3095 3096 3097 3098 3099
	/*
	 * Take a local copy of the address_space - page.mapping may be zeroed
	 * by truncate after unlock_page().   The address_space itself remains
	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
	 * release semantics to prevent the compiler from undoing this copying.
	 */
3100
	mapping = page_rmapping(fault_page);
3101 3102 3103 3104 3105 3106 3107
	unlock_page(fault_page);
	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
		/*
		 * Some device drivers do not set page.mapping but still
		 * dirty their pages
		 */
		balance_dirty_pages_ratelimited(mapping);
3108
	}
3109

3110
	if (!vma->vm_ops->page_mkwrite)
3111
		file_update_time(vma->vm_file);
N
Nick Piggin 已提交
3112

3113
	return ret;
3114
}
3115

3116 3117 3118 3119 3120 3121
/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults).
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3122
static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3123
		unsigned long address, pte_t *page_table, pmd_t *pmd,
3124
		unsigned int flags, pte_t orig_pte)
3125 3126
{
	pgoff_t pgoff = (((address & PAGE_MASK)
3127
			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3128

3129
	pte_unmap(page_table);
3130 3131 3132
	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
	if (!vma->vm_ops->fault)
		return VM_FAULT_SIGBUS;
3133 3134 3135
	if (!(flags & FAULT_FLAG_WRITE))
		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3136 3137 3138
	if (!(vma->vm_flags & VM_SHARED))
		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3139
	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3140 3141
}

3142
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3143 3144
				unsigned long addr, int page_nid,
				int *flags)
3145 3146 3147 3148
{
	get_page(page);

	count_vm_numa_event(NUMA_HINT_FAULTS);
3149
	if (page_nid == numa_node_id()) {
3150
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3151 3152
		*flags |= TNF_FAULT_LOCAL;
	}
3153 3154 3155 3156

	return mpol_misplaced(page, vma, addr);
}

3157
static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3158 3159
		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
{
3160
	struct page *page = NULL;
3161
	spinlock_t *ptl;
3162
	int page_nid = -1;
3163
	int last_cpupid;
3164
	int target_nid;
3165
	bool migrated = false;
3166
	bool was_writable = pte_write(pte);
3167
	int flags = 0;
3168

3169 3170 3171
	/* A PROT_NONE fault should not end up here */
	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));

3172 3173 3174 3175 3176
	/*
	* The "pte" at this point cannot be used safely without
	* validation through pte_unmap_same(). It's of NUMA type but
	* the pfn may be screwed if the read is non atomic.
	*
3177 3178 3179
	* We can safely just do a "set_pte_at()", because the old
	* page table entry is not accessible, so there would be no
	* concurrent hardware modifications to the PTE.
3180 3181 3182
	*/
	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
3183 3184 3185 3186 3187
	if (unlikely(!pte_same(*ptep, pte))) {
		pte_unmap_unlock(ptep, ptl);
		goto out;
	}

3188 3189 3190
	/* Make it present again */
	pte = pte_modify(pte, vma->vm_page_prot);
	pte = pte_mkyoung(pte);
3191 3192
	if (was_writable)
		pte = pte_mkwrite(pte);
3193 3194 3195 3196 3197 3198 3199 3200 3201
	set_pte_at(mm, addr, ptep, pte);
	update_mmu_cache(vma, addr, ptep);

	page = vm_normal_page(vma, addr, pte);
	if (!page) {
		pte_unmap_unlock(ptep, ptl);
		return 0;
	}

3202
	/*
3203 3204 3205 3206 3207 3208
	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
	 * much anyway since they can be in shared cache state. This misses
	 * the case where a mapping is writable but the process never writes
	 * to it but pte_write gets cleared during protection updates and
	 * pte_dirty has unpredictable behaviour between PTE scan updates,
	 * background writeback, dirty balancing and application behaviour.
3209
	 */
3210
	if (!(vma->vm_flags & VM_WRITE))
3211 3212
		flags |= TNF_NO_GROUP;

3213 3214 3215 3216 3217 3218 3219
	/*
	 * Flag if the page is shared between multiple address spaces. This
	 * is later used when determining whether to group tasks together
	 */
	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
		flags |= TNF_SHARED;

3220
	last_cpupid = page_cpupid_last(page);
3221
	page_nid = page_to_nid(page);
3222
	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3223
	pte_unmap_unlock(ptep, ptl);
3224 3225 3226 3227 3228 3229
	if (target_nid == -1) {
		put_page(page);
		goto out;
	}

	/* Migrate to the requested node */
3230
	migrated = migrate_misplaced_page(page, vma, target_nid);
3231
	if (migrated) {
3232
		page_nid = target_nid;
3233
		flags |= TNF_MIGRATED;
3234 3235
	} else
		flags |= TNF_MIGRATE_FAIL;
3236 3237

out:
3238
	if (page_nid != -1)
3239
		task_numa_fault(last_cpupid, page_nid, 1, flags);
3240 3241 3242
	return 0;
}

M
Matthew Wilcox 已提交
3243 3244 3245
static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, unsigned int flags)
{
3246
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
			unsigned int flags)
{
3257
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3258 3259 3260 3261 3262 3263
		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

L
Linus Torvalds 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272
/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
H
Hugh Dickins 已提交
3273 3274
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
3275 3276 3277 3278
 * We return with pte unmapped and unlocked.
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3279
 */
3280
static int handle_pte_fault(struct mm_struct *mm,
3281 3282
		     struct vm_area_struct *vma, unsigned long address,
		     pte_t *pte, pmd_t *pmd, unsigned int flags)
L
Linus Torvalds 已提交
3283 3284
{
	pte_t entry;
3285
	spinlock_t *ptl;
L
Linus Torvalds 已提交
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	/*
	 * some architectures can have larger ptes than wordsize,
	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
	 * The code below just needs a consistent view for the ifs and
	 * we later double check anyway with the ptl lock held. So here
	 * a barrier will do.
	 */
	entry = *pte;
	barrier();
L
Linus Torvalds 已提交
3297
	if (!pte_present(entry)) {
3298
		if (pte_none(entry)) {
3299 3300 3301 3302
			if (vma_is_anonymous(vma))
				return do_anonymous_page(mm, vma, address,
							 pte, pmd, flags);
			else
3303 3304
				return do_fault(mm, vma, address, pte, pmd,
						flags, entry);
3305 3306
		}
		return do_swap_page(mm, vma, address,
3307
					pte, pmd, flags, entry);
L
Linus Torvalds 已提交
3308 3309
	}

3310
	if (pte_protnone(entry))
3311 3312
		return do_numa_page(mm, vma, address, entry, pte, pmd);

H
Hugh Dickins 已提交
3313
	ptl = pte_lockptr(mm, pmd);
3314 3315 3316
	spin_lock(ptl);
	if (unlikely(!pte_same(*pte, entry)))
		goto unlock;
3317
	if (flags & FAULT_FLAG_WRITE) {
L
Linus Torvalds 已提交
3318
		if (!pte_write(entry))
3319 3320
			return do_wp_page(mm, vma, address,
					pte, pmd, ptl, entry);
L
Linus Torvalds 已提交
3321 3322 3323
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
3324
	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3325
		update_mmu_cache(vma, address, pte);
3326 3327 3328 3329 3330 3331 3332
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
3333
		if (flags & FAULT_FLAG_WRITE)
3334
			flush_tlb_fix_spurious_fault(vma, address);
3335
	}
3336 3337
unlock:
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3338
	return 0;
L
Linus Torvalds 已提交
3339 3340 3341 3342
}

/*
 * By the time we get here, we already hold the mm semaphore
3343 3344 3345
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3346
 */
3347 3348
static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			     unsigned long address, unsigned int flags)
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

3355
	if (unlikely(is_vm_hugetlb_page(vma)))
3356
		return hugetlb_fault(mm, vma, address, flags);
L
Linus Torvalds 已提交
3357 3358 3359 3360

	pgd = pgd_offset(mm, address);
	pud = pud_alloc(mm, pgd, address);
	if (!pud)
H
Hugh Dickins 已提交
3361
		return VM_FAULT_OOM;
L
Linus Torvalds 已提交
3362 3363
	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
H
Hugh Dickins 已提交
3364
		return VM_FAULT_OOM;
3365
	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
M
Matthew Wilcox 已提交
3366
		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3367 3368
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
3369 3370
	} else {
		pmd_t orig_pmd = *pmd;
3371 3372
		int ret;

3373 3374
		barrier();
		if (pmd_trans_huge(orig_pmd)) {
3375 3376
			unsigned int dirty = flags & FAULT_FLAG_WRITE;

3377 3378 3379 3380 3381 3382 3383 3384
			/*
			 * If the pmd is splitting, return and retry the
			 * the fault.  Alternative: wait until the split
			 * is done, and goto retry.
			 */
			if (pmd_trans_splitting(orig_pmd))
				return 0;

3385
			if (pmd_protnone(orig_pmd))
3386
				return do_huge_pmd_numa_page(mm, vma, address,
3387 3388
							     orig_pmd, pmd);

3389
			if (dirty && !pmd_write(orig_pmd)) {
M
Matthew Wilcox 已提交
3390 3391
				ret = wp_huge_pmd(mm, vma, address, pmd,
							orig_pmd, flags);
3392 3393
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
3394 3395 3396
			} else {
				huge_pmd_set_accessed(mm, vma, address, pmd,
						      orig_pmd, dirty);
3397
				return 0;
3398
			}
3399 3400 3401 3402 3403 3404 3405 3406
		}
	}

	/*
	 * Use __pte_alloc instead of pte_alloc_map, because we can't
	 * run pte_offset_map on the pmd, if an huge pmd could
	 * materialize from under us from a different thread.
	 */
3407 3408
	if (unlikely(pmd_none(*pmd)) &&
	    unlikely(__pte_alloc(mm, vma, pmd, address)))
H
Hugh Dickins 已提交
3409
		return VM_FAULT_OOM;
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	/* if an huge pmd materialized from under us just retry later */
	if (unlikely(pmd_trans_huge(*pmd)))
		return 0;
	/*
	 * A regular pmd is established and it can't morph into a huge pmd
	 * from under us anymore at this point because we hold the mmap_sem
	 * read mode and khugepaged takes it in write mode. So now it's
	 * safe to run pte_offset_map().
	 */
	pte = pte_offset_map(pmd, address);
L
Linus Torvalds 已提交
3420

3421
	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
L
Linus Torvalds 已提交
3422 3423
}

3424 3425 3426 3427 3428 3429
/*
 * By the time we get here, we already hold the mm semaphore
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		    unsigned long address, unsigned int flags)
{
	int ret;

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
	mem_cgroup_count_vm_event(mm, PGFAULT);

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

	/*
	 * Enable the memcg OOM handling for faults triggered in user
	 * space.  Kernel faults are handled more gracefully.
	 */
	if (flags & FAULT_FLAG_USER)
3448
		mem_cgroup_oom_enable();
3449 3450 3451

	ret = __handle_mm_fault(mm, vma, address, flags);

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	if (flags & FAULT_FLAG_USER) {
		mem_cgroup_oom_disable();
                /*
                 * The task may have entered a memcg OOM situation but
                 * if the allocation error was handled gracefully (no
                 * VM_FAULT_OOM), there is no need to kill anything.
                 * Just clean up the OOM state peacefully.
                 */
                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
                        mem_cgroup_oom_synchronize(false);
	}
3463

3464 3465
	return ret;
}
3466
EXPORT_SYMBOL_GPL(handle_mm_fault);
3467

L
Linus Torvalds 已提交
3468 3469 3470
#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
H
Hugh Dickins 已提交
3471
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3472
 */
3473
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
L
Linus Torvalds 已提交
3474
{
H
Hugh Dickins 已提交
3475 3476
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
3477
		return -ENOMEM;
L
Linus Torvalds 已提交
3478

3479 3480
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3481
	spin_lock(&mm->page_table_lock);
3482
	if (pgd_present(*pgd))		/* Another has populated it */
3483
		pud_free(mm, new);
3484 3485
	else
		pgd_populate(mm, pgd, new);
H
Hugh Dickins 已提交
3486
	spin_unlock(&mm->page_table_lock);
3487
	return 0;
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
H
Hugh Dickins 已提交
3494
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3495
 */
3496
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
L
Linus Torvalds 已提交
3497
{
H
Hugh Dickins 已提交
3498 3499
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
3500
		return -ENOMEM;
L
Linus Torvalds 已提交
3501

3502 3503
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3504
	spin_lock(&mm->page_table_lock);
L
Linus Torvalds 已提交
3505
#ifndef __ARCH_HAS_4LEVEL_HACK
3506 3507
	if (!pud_present(*pud)) {
		mm_inc_nr_pmds(mm);
3508
		pud_populate(mm, pud, new);
3509
	} else	/* Another has populated it */
3510
		pmd_free(mm, new);
3511 3512 3513
#else
	if (!pgd_present(*pud)) {
		mm_inc_nr_pmds(mm);
3514
		pgd_populate(mm, pud, new);
3515 3516
	} else /* Another has populated it */
		pmd_free(mm, new);
L
Linus Torvalds 已提交
3517
#endif /* __ARCH_HAS_4LEVEL_HACK */
H
Hugh Dickins 已提交
3518
	spin_unlock(&mm->page_table_lock);
3519
	return 0;
3520
}
L
Linus Torvalds 已提交
3521 3522
#endif /* __PAGETABLE_PMD_FOLDED */

3523
static int __follow_pte(struct mm_struct *mm, unsigned long address,
J
Johannes Weiner 已提交
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
		pte_t **ptepp, spinlock_t **ptlp)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
3540
	VM_BUG_ON(pmd_trans_huge(*pmd));
J
Johannes Weiner 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto out;

	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
	if (pmd_huge(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!ptep)
		goto out;
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
out:
	return -EINVAL;
}

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
	return res;
}

J
Johannes Weiner 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

3601
#ifdef CONFIG_HAVE_IOREMAP_PROT
3602 3603 3604
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
3605
{
3606
	int ret = -EINVAL;
3607 3608 3609
	pte_t *ptep, pte;
	spinlock_t *ptl;

3610 3611
	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;
3612

3613
	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3614
		goto out;
3615
	pte = *ptep;
3616

3617 3618 3619 3620
	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
3621
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3622

3623
	ret = 0;
3624 3625 3626
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
3627
	return ret;
3628 3629 3630 3631 3632 3633 3634
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
K
KOSAKI Motohiro 已提交
3635
	void __iomem *maddr;
3636 3637
	int offset = addr & (PAGE_SIZE-1);

3638
	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3639 3640
		return -EINVAL;

3641
	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3642 3643 3644 3645 3646 3647 3648 3649
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
3650
EXPORT_SYMBOL_GPL(generic_access_phys);
3651 3652
#endif

3653
/*
3654 3655
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
3656
 */
3657 3658
static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long addr, void *buf, int len, int write)
3659 3660 3661 3662 3663
{
	struct vm_area_struct *vma;
	void *old_buf = buf;

	down_read(&mm->mmap_sem);
S
Simon Arlott 已提交
3664
	/* ignore errors, just check how much was successfully transferred */
3665 3666 3667
	while (len) {
		int bytes, ret, offset;
		void *maddr;
3668
		struct page *page = NULL;
3669 3670 3671

		ret = get_user_pages(tsk, mm, addr, 1,
				write, 1, &page, &vma);
3672
		if (ret <= 0) {
3673 3674 3675
#ifndef CONFIG_HAVE_IOREMAP_PROT
			break;
#else
3676 3677 3678 3679 3680
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
			vma = find_vma(mm, addr);
3681
			if (!vma || vma->vm_start > addr)
3682 3683 3684 3685 3686 3687 3688
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
				break;
			bytes = ret;
3689
#endif
3690
		} else {
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
			page_cache_release(page);
3707 3708 3709 3710 3711 3712 3713 3714 3715
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}
3716

S
Stephen Wilson 已提交
3717
/**
3718
 * access_remote_vm - access another process' address space
S
Stephen Wilson 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
 * @write:	whether the access is a write
 *
 * The caller must hold a reference on @mm.
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write)
{
	return __access_remote_vm(NULL, mm, addr, buf, len, write);
}

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
		void *buf, int len, int write)
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
	mmput(mm);

	return ret;
}

3754 3755 3756 3757 3758 3759 3760 3761
/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

3762 3763 3764 3765 3766 3767 3768
	/*
	 * Do not print if we are in atomic
	 * contexts (in exception stacks, etc.):
	 */
	if (preempt_count())
		return;

3769 3770 3771 3772 3773 3774
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
		char *buf = (char *)__get_free_page(GFP_KERNEL);
		if (buf) {
A
Andy Shevchenko 已提交
3775
			char *p;
3776

M
Miklos Szeredi 已提交
3777
			p = file_path(f, buf, PAGE_SIZE);
3778 3779
			if (IS_ERR(p))
				p = "?";
A
Andy Shevchenko 已提交
3780
			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3781 3782 3783 3784 3785
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
3786
	up_read(&mm->mmap_sem);
3787
}
3788

3789
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3790
void __might_fault(const char *file, int line)
3791
{
3792 3793 3794 3795 3796 3797 3798 3799
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
	if (segment_eq(get_fs(), KERNEL_DS))
		return;
3800
	if (pagefault_disabled())
3801
		return;
3802 3803
	__might_sleep(file, line, 0);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3804
	if (current->mm)
3805
		might_lock_read(&current->mm->mmap_sem);
3806
#endif
3807
}
3808
EXPORT_SYMBOL(__might_fault);
3809
#endif
A
Andrea Arcangeli 已提交
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
void clear_huge_page(struct page *page,
		     unsigned long addr, unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
	}
}

static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_user_huge_page(struct page *dst, struct page *src,
			 unsigned long addr, struct vm_area_struct *vma,
			 unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
	}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3881

3882
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3883 3884 3885 3886 3887 3888 3889 3890 3891

static struct kmem_cache *page_ptl_cachep;

void __init ptlock_cache_init(void)
{
	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
			SLAB_PANIC, NULL);
}

3892
bool ptlock_alloc(struct page *page)
3893 3894 3895
{
	spinlock_t *ptl;

3896
	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3897 3898
	if (!ptl)
		return false;
3899
	page->ptl = ptl;
3900 3901 3902
	return true;
}

3903
void ptlock_free(struct page *page)
3904
{
3905
	kmem_cache_free(page_ptl_cachep, page->ptl);
3906 3907
}
#endif