mmu.c 112.8 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65 66 67 68 69 70 71 72 73 74 75 76

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

77
#ifdef MMU_DEBUG
78
static bool dbg = 0;
79
module_param(dbg, bool, 0644);
80
#endif
A
Avi Kivity 已提交
81

82 83 84
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
85 86 87 88 89
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
90
#endif
A
Avi Kivity 已提交
91

92 93
#define PTE_PREFETCH_NUM		8

94
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
95 96 97 98 99
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
100
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
101 102 103 104 105 106 107 108

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
109
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
110

111 112 113
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117 118

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


119
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
120 121
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 123 124 125 126 127
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128 129 130 131

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
138

139 140 141 142 143
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

144 145
#include <trace/events/kvm.h>

146 147 148
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

149 150
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151

152 153
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

154 155 156
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

157 158 159
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
160 161
};

162 163 164 165
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
166
	int level;
167 168 169 170 171 172 173 174
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

175 176 177 178 179 180
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

181
static struct kmem_cache *pte_list_desc_cache;
182
static struct kmem_cache *mmu_page_header_cache;
183
static struct percpu_counter kvm_total_used_mmu_pages;
184

S
Sheng Yang 已提交
185 186 187 188 189
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
190 191 192
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
193
static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 195 196 197 198 199 200

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

201 202 203 204 205 206 207 208
/*
 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 * number.
 */
#define MMIO_SPTE_GEN_LOW_SHIFT		3
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

209
#define MMIO_GEN_SHIFT			19
210 211
#define MMIO_GEN_LOW_SHIFT		9
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
212 213
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

237 238
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
239
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
240 241
}

242 243
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
244
{
245 246
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
247

248
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
249 250
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

251
	trace_mark_mmio_spte(sptep, gfn, access, gen);
252
	mmu_spte_set(sptep, mask);
253 254 255 256 257 258 259 260 261
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
262 263
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
264 265 266 267
}

static unsigned get_mmio_spte_access(u64 spte)
{
268 269
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
270 271
}

272 273
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
274 275
{
	if (unlikely(is_noslot_pfn(pfn))) {
276
		mark_mmio_spte(kvm, sptep, gfn, access);
277 278 279 280 281
		return true;
	}

	return false;
}
282

283 284
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
285 286 287 288 289 290 291
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
292 293
}

294 295 296 297 298
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
299
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
300
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
301 302 303 304 305 306 307 308 309
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
310 311 312 313 314
static int is_cpuid_PSE36(void)
{
	return 1;
}

315 316
static int is_nx(struct kvm_vcpu *vcpu)
{
317
	return vcpu->arch.efer & EFER_NX;
318 319
}

320 321
static int is_shadow_present_pte(u64 pte)
{
322
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
323 324
}

M
Marcelo Tosatti 已提交
325 326 327 328 329
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

330
static int is_rmap_spte(u64 pte)
331
{
332
	return is_shadow_present_pte(pte);
333 334
}

335 336 337 338
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
339
	if (is_large_pte(pte))
340 341 342 343
		return 1;
	return 0;
}

344
static pfn_t spte_to_pfn(u64 pte)
345
{
346
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
347 348
}

349 350 351 352 353 354 355
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

356
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
357
static void __set_spte(u64 *sptep, u64 spte)
358
{
359
	*sptep = spte;
360 361
}

362
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
363
{
364 365 366 367 368 369 370
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
371 372 373 374 375

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
376 377 378 379 380 381

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
382
#else
383 384 385 386 387 388 389
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
390

391 392 393 394 395 396 397 398 399 400 401 402
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

403 404 405
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
406

407 408 409 410 411 412 413 414 415 416 417 418 419
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
420 421
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
438
	count_spte_clear(sptep, spte);
439 440 441 442 443 444 445 446 447 448 449
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
450 451
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
452
	count_spte_clear(sptep, spte);
453 454 455

	return orig.spte;
}
456 457 458 459

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
460 461 462 463 464 465 466 467 468 469 470 471 472 473
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
514 515
#endif

516 517
static bool spte_is_locklessly_modifiable(u64 spte)
{
518 519
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
520 521
}

522 523
static bool spte_has_volatile_bits(u64 spte)
{
524 525 526 527 528 529 530 531 532
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

533 534 535 536 537 538
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

539 540
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
541 542 543 544 545
		return false;

	return true;
}

546 547 548 549 550
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
565 566 567 568 569 570
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
571
 */
572
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
573
{
574
	u64 old_spte = *sptep;
575
	bool ret = false;
576 577

	WARN_ON(!is_rmap_spte(new_spte));
578

579 580 581 582
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
583

584
	if (!spte_has_volatile_bits(old_spte))
585
		__update_clear_spte_fast(sptep, new_spte);
586
	else
587
		old_spte = __update_clear_spte_slow(sptep, new_spte);
588

589 590 591 592 593
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
594 595
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
596 597
		ret = true;

598
	if (!shadow_accessed_mask)
599
		return ret;
600 601 602 603 604

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
605 606

	return ret;
607 608
}

609 610 611 612 613 614 615 616 617 618 619
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
620
		__update_clear_spte_fast(sptep, 0ull);
621
	else
622
		old_spte = __update_clear_spte_slow(sptep, 0ull);
623 624 625 626 627

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
628 629 630 631 632 633 634 635

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

636 637 638 639 640 641 642 643 644 645 646 647 648 649
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
650
	__update_clear_spte_fast(sptep, 0ull);
651 652
}

653 654 655 656 657 658 659
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
660 661 662 663 664 665 666 667 668 669 670
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
671 672 673 674
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
675 676 677 678 679 680 681 682
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
683 684
}

685
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
686
				  struct kmem_cache *base_cache, int min)
687 688 689 690
{
	void *obj;

	if (cache->nobjs >= min)
691
		return 0;
692
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
693
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
694
		if (!obj)
695
			return -ENOMEM;
696 697
		cache->objects[cache->nobjs++] = obj;
	}
698
	return 0;
699 700
}

701 702 703 704 705
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

706 707
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
708 709
{
	while (mc->nobjs)
710
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
711 712
}

A
Avi Kivity 已提交
713
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
714
				       int min)
A
Avi Kivity 已提交
715
{
716
	void *page;
A
Avi Kivity 已提交
717 718 719 720

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
721
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
722 723
		if (!page)
			return -ENOMEM;
724
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
725 726 727 728 729 730 731
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
732
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
733 734
}

735
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
736
{
737 738
	int r;

739
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
740
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
741 742
	if (r)
		goto out;
743
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
744 745
	if (r)
		goto out;
746
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
747
				   mmu_page_header_cache, 4);
748 749
out:
	return r;
750 751 752 753
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
754 755
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
756
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
757 758
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
759 760
}

761
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
762 763 764 765 766 767 768 769
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

770
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
771
{
772
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
773 774
}

775
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
776
{
777
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
778 779
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
796
/*
797 798
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
799
 */
800 801 802
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
803 804 805
{
	unsigned long idx;

806
	idx = gfn_to_index(gfn, slot->base_gfn, level);
807
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
808 809 810 811
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
812
	struct kvm_memory_slot *slot;
813
	struct kvm_lpage_info *linfo;
814
	int i;
M
Marcelo Tosatti 已提交
815

A
Avi Kivity 已提交
816
	slot = gfn_to_memslot(kvm, gfn);
817 818
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
819 820
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
821
	}
822
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
823 824 825 826
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
827
	struct kvm_memory_slot *slot;
828
	struct kvm_lpage_info *linfo;
829
	int i;
M
Marcelo Tosatti 已提交
830

A
Avi Kivity 已提交
831
	slot = gfn_to_memslot(kvm, gfn);
832 833
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
834 835 836
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
837
	}
838
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
839 840
}

841 842 843
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
844
{
845
	struct kvm_memory_slot *slot;
846
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
847

A
Avi Kivity 已提交
848
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
849
	if (slot) {
850 851
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
852 853 854 855 856
	}

	return 1;
}

857
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
858
{
J
Joerg Roedel 已提交
859
	unsigned long page_size;
860
	int i, ret = 0;
M
Marcelo Tosatti 已提交
861

J
Joerg Roedel 已提交
862
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
863

864 865 866 867 868 869 870 871
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

872
	return ret;
M
Marcelo Tosatti 已提交
873 874
}

875 876 877
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
878 879
{
	struct kvm_memory_slot *slot;
880 881 882 883 884 885 886 887 888 889 890

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
891
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
892 893 894 895 896
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
897

898 899 900 901 902
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
903
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
904 905

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
906 907 908 909
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
910 911
}

912
/*
913
 * Pte mapping structures:
914
 *
915
 * If pte_list bit zero is zero, then pte_list point to the spte.
916
 *
917 918
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
919
 *
920
 * Returns the number of pte entries before the spte was added or zero if
921 922
 * the spte was not added.
 *
923
 */
924 925
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
926
{
927
	struct pte_list_desc *desc;
928
	int i, count = 0;
929

930 931 932 933 934 935 936
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
937
		desc->sptes[1] = spte;
938
		*pte_list = (unsigned long)desc | 1;
939
		++count;
940
	} else {
941 942 943
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
944
			desc = desc->more;
945
			count += PTE_LIST_EXT;
946
		}
947 948
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
949 950
			desc = desc->more;
		}
A
Avi Kivity 已提交
951
		for (i = 0; desc->sptes[i]; ++i)
952
			++count;
A
Avi Kivity 已提交
953
		desc->sptes[i] = spte;
954
	}
955
	return count;
956 957
}

958 959 960
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
961 962 963
{
	int j;

964
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
965
		;
A
Avi Kivity 已提交
966 967
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
968 969 970
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
971
		*pte_list = (unsigned long)desc->sptes[0];
972 973 974 975
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
976 977
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
978 979
}

980
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
981
{
982 983
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
984 985
	int i;

986 987
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
988
		BUG();
989 990 991 992
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
993 994
			BUG();
		}
995
		*pte_list = 0;
996
	} else {
997 998
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
999 1000
		prev_desc = NULL;
		while (desc) {
1001
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1002
				if (desc->sptes[i] == spte) {
1003
					pte_list_desc_remove_entry(pte_list,
1004
							       desc, i,
1005 1006 1007 1008 1009 1010
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1011
		pr_err("pte_list_remove: %p many->many\n", spte);
1012 1013 1014 1015
		BUG();
	}
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1036
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1037
				    struct kvm_memory_slot *slot)
1038
{
1039
	unsigned long idx;
1040

1041
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1042
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1053
	return __gfn_to_rmap(gfn, level, slot);
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1148
static void drop_spte(struct kvm *kvm, u64 *sptep)
1149
{
1150
	if (mmu_spte_clear_track_bits(sptep))
1151
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1175
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1176
 * spte write-protection is caused by protecting shadow page table.
1177 1178 1179 1180 1181 1182 1183
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1184
 *
1185
 * Return true if tlb need be flushed.
1186
 */
1187
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1188 1189 1190
{
	u64 spte = *sptep;

1191 1192
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1193 1194 1195 1196
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1197 1198
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1199
	spte = spte & ~PT_WRITABLE_MASK;
1200

1201
	return mmu_spte_update(sptep, spte);
1202 1203
}

1204
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1205
				 bool pt_protect)
1206
{
1207 1208
	u64 *sptep;
	struct rmap_iterator iter;
1209
	bool flush = false;
1210

1211 1212
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1213

1214
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1215
		sptep = rmap_get_next(&iter);
1216
	}
1217

1218
	return flush;
1219 1220
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1234 1235 1236
{
	unsigned long *rmapp;

1237
	while (mask) {
1238 1239
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1240
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1241

1242 1243 1244
		/* clear the first set bit */
		mask &= mask - 1;
	}
1245 1246
}

1247
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1248 1249
{
	struct kvm_memory_slot *slot;
1250 1251
	unsigned long *rmapp;
	int i;
1252
	bool write_protected = false;
1253 1254

	slot = gfn_to_memslot(kvm, gfn);
1255 1256 1257 1258

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1259
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1260 1261 1262
	}

	return write_protected;
1263 1264
}

F
Frederik Deweerdt 已提交
1265
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1266
			   struct kvm_memory_slot *slot, unsigned long data)
1267
{
1268 1269
	u64 *sptep;
	struct rmap_iterator iter;
1270 1271
	int need_tlb_flush = 0;

1272 1273 1274 1275 1276
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1277 1278
		need_tlb_flush = 1;
	}
1279

1280 1281 1282
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1283
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1284
			     struct kvm_memory_slot *slot, unsigned long data)
1285
{
1286 1287
	u64 *sptep;
	struct rmap_iterator iter;
1288
	int need_flush = 0;
1289
	u64 new_spte;
1290 1291 1292 1293 1294
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1295 1296 1297 1298 1299

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1300
		need_flush = 1;
1301

1302
		if (pte_write(*ptep)) {
1303 1304
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1305
		} else {
1306
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1307 1308 1309 1310
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1311
			new_spte &= ~shadow_accessed_mask;
1312 1313 1314 1315

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1316 1317
		}
	}
1318

1319 1320 1321 1322 1323 1324
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1325 1326 1327 1328 1329 1330
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1331
					       struct kvm_memory_slot *slot,
1332
					       unsigned long data))
1333
{
1334
	int j;
1335
	int ret = 0;
1336
	struct kvm_memslots *slots;
1337
	struct kvm_memory_slot *memslot;
1338

1339
	slots = kvm_memslots(kvm);
1340

1341
	kvm_for_each_memslot(memslot, slots) {
1342
		unsigned long hva_start, hva_end;
1343
		gfn_t gfn_start, gfn_end;
1344

1345 1346 1347 1348 1349 1350 1351
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1352
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1353
		 */
1354
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1355
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1356

1357 1358 1359 1360
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1361

1362 1363 1364 1365 1366 1367
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1368

1369
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1370

1371 1372
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1373 1374 1375
		}
	}

1376
	return ret;
1377 1378
}

1379 1380 1381
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1382
					 struct kvm_memory_slot *slot,
1383 1384 1385
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1386 1387 1388 1389
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1390 1391 1392
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1393 1394 1395 1396 1397
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1398 1399
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1400
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1401 1402
}

F
Frederik Deweerdt 已提交
1403
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1404
			 struct kvm_memory_slot *slot, unsigned long data)
1405
{
1406
	u64 *sptep;
1407
	struct rmap_iterator uninitialized_var(iter);
1408 1409
	int young = 0;

1410
	/*
1411 1412
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1413 1414 1415 1416 1417
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1418 1419 1420 1421
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1422

1423 1424
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1425
		BUG_ON(!is_shadow_present_pte(*sptep));
1426

1427
		if (*sptep & shadow_accessed_mask) {
1428
			young = 1;
1429 1430
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1431 1432
		}
	}
1433 1434 1435
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1436 1437 1438
	return young;
}

A
Andrea Arcangeli 已提交
1439
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1440
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1441
{
1442 1443
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1454 1455
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1456
		BUG_ON(!is_shadow_present_pte(*sptep));
1457

1458
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1459 1460 1461 1462 1463 1464 1465 1466
			young = 1;
			break;
		}
	}
out:
	return young;
}

1467 1468
#define RMAP_RECYCLE_THRESHOLD 1000

1469
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1470 1471
{
	unsigned long *rmapp;
1472 1473 1474
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1475

1476
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1477

1478
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1479 1480 1481
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1482 1483
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1484
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1485 1486
}

A
Andrea Arcangeli 已提交
1487 1488 1489 1490 1491
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1492
#ifdef MMU_DEBUG
1493
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1494
{
1495 1496 1497
	u64 *pos;
	u64 *end;

1498
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1499
		if (is_shadow_present_pte(*pos)) {
1500
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1501
			       pos, *pos);
A
Avi Kivity 已提交
1502
			return 0;
1503
		}
A
Avi Kivity 已提交
1504 1505
	return 1;
}
1506
#endif
A
Avi Kivity 已提交
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1520
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1521
{
1522
	ASSERT(is_empty_shadow_page(sp->spt));
1523
	hlist_del(&sp->hash_link);
1524 1525
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1526 1527
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1528
	kmem_cache_free(mmu_page_header_cache, sp);
1529 1530
}

1531 1532
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1533
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1534 1535
}

1536
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1537
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1538 1539 1540 1541
{
	if (!parent_pte)
		return;

1542
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1543 1544
}

1545
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1546 1547
				       u64 *parent_pte)
{
1548
	pte_list_remove(parent_pte, &sp->parent_ptes);
1549 1550
}

1551 1552 1553 1554
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1555
	mmu_spte_clear_no_track(parent_pte);
1556 1557
}

1558 1559
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1560
{
1561
	struct kvm_mmu_page *sp;
1562

1563 1564
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1565
	if (!direct)
1566
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1567
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1568 1569 1570 1571 1572 1573

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1574 1575 1576 1577 1578
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1579 1580
}

1581
static void mark_unsync(u64 *spte);
1582
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1583
{
1584
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1585 1586
}

1587
static void mark_unsync(u64 *spte)
1588
{
1589
	struct kvm_mmu_page *sp;
1590
	unsigned int index;
1591

1592
	sp = page_header(__pa(spte));
1593 1594
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1595
		return;
1596
	if (sp->unsync_children++)
1597
		return;
1598
	kvm_mmu_mark_parents_unsync(sp);
1599 1600
}

1601
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1602
			       struct kvm_mmu_page *sp)
1603 1604 1605 1606
{
	return 1;
}

M
Marcelo Tosatti 已提交
1607 1608 1609 1610
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1611 1612
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1613
				 const void *pte)
1614 1615 1616 1617
{
	WARN_ON(1);
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1628 1629
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1630
{
1631
	int i;
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1648

1649
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1650
		struct kvm_mmu_page *child;
1651 1652
		u64 ent = sp->spt[i];

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1682 1683 1684
	}


1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1696 1697 1698 1699 1700
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1701
	trace_kvm_mmu_sync_page(sp);
1702 1703 1704 1705
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1706 1707 1708 1709
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1721 1722 1723 1724 1725 1726 1727 1728
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1729

1730
/* @sp->gfn should be write-protected at the call site */
1731
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1732
			   struct list_head *invalid_list, bool clear_unsync)
1733
{
1734
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1735
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1736 1737 1738
		return 1;
	}

1739
	if (clear_unsync)
1740 1741
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1742
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1743
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1744 1745 1746 1747 1748 1749 1750
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1751 1752 1753
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1754
	LIST_HEAD(invalid_list);
1755 1756
	int ret;

1757
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1758
	if (ret)
1759 1760
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1761 1762 1763
	return ret;
}

1764 1765 1766 1767 1768 1769 1770
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1771 1772
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1773
{
1774
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1775 1776
}

1777 1778 1779 1780
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1781
	LIST_HEAD(invalid_list);
1782 1783
	bool flush = false;

1784
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1785
		if (!s->unsync)
1786 1787 1788
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1789
		kvm_unlink_unsync_page(vcpu->kvm, s);
1790
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1791
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1792
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1793 1794 1795 1796 1797
			continue;
		}
		flush = true;
	}

1798
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1799 1800 1801 1802
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1803 1804 1805
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1806 1807
};

1808 1809 1810 1811 1812 1813
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1814 1815 1816
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1835
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1836
{
1837 1838 1839 1840 1841
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1852 1853
}

1854 1855 1856
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1857
{
1858 1859 1860
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1861

1862 1863 1864 1865 1866 1867 1868
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1869
	LIST_HEAD(invalid_list);
1870 1871 1872

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1873
		bool protected = false;
1874 1875 1876 1877 1878 1879 1880

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1881
		for_each_sp(pages, sp, parents, i) {
1882
			kvm_sync_page(vcpu, sp, &invalid_list);
1883 1884
			mmu_pages_clear_parents(&parents);
		}
1885
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1886
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1887 1888
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1911 1912 1913 1914 1915
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1916 1917 1918 1919
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1920
					     int direct,
1921
					     unsigned access,
1922
					     u64 *parent_pte)
1923 1924 1925
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1926 1927
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1928

1929
	role = vcpu->arch.mmu.base_role;
1930
	role.level = level;
1931
	role.direct = direct;
1932
	if (role.direct)
1933
		role.cr4_pae = 0;
1934
	role.access = access;
1935 1936
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1937 1938 1939 1940
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1941
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1942 1943 1944
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1945 1946
		if (!need_sync && sp->unsync)
			need_sync = true;
1947

1948 1949
		if (sp->role.word != role.word)
			continue;
1950

1951 1952
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1953

1954 1955
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1956
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1957 1958 1959
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1960

1961
		__clear_sp_write_flooding_count(sp);
1962 1963 1964
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1965
	++vcpu->kvm->stat.mmu_cache_miss;
1966
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1967 1968 1969 1970
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1971 1972
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1973
	if (!direct) {
1974 1975
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1976 1977 1978
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1979 1980
		account_shadowed(vcpu->kvm, gfn);
	}
1981
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1982
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1983
	trace_kvm_mmu_get_page(sp, true);
1984
	return sp;
1985 1986
}

1987 1988 1989 1990 1991 1992
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
1993 1994 1995 1996 1997 1998

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2013

2014 2015 2016 2017 2018
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2019 2020
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2021
{
2022
	if (is_last_spte(spte, iterator->level)) {
2023 2024 2025 2026
		iterator->level = 0;
		return;
	}

2027
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2028 2029 2030
	--iterator->level;
}

2031 2032 2033 2034 2035
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2036
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2037 2038 2039
{
	u64 spte;

2040 2041 2042
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2043
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2044 2045 2046 2047
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2048

2049
	mmu_spte_set(sptep, spte);
2050 2051
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2069
		drop_parent_pte(child, sptep);
2070 2071 2072 2073
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2074
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2075 2076 2077 2078 2079 2080 2081
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2082
		if (is_last_spte(pte, sp->role.level)) {
2083
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2084 2085 2086
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2087
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2088
			drop_parent_pte(child, spte);
2089
		}
X
Xiao Guangrong 已提交
2090 2091 2092 2093
		return true;
	}

	if (is_mmio_spte(pte))
2094
		mmu_spte_clear_no_track(spte);
2095

X
Xiao Guangrong 已提交
2096
	return false;
2097 2098
}

2099
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2100
					 struct kvm_mmu_page *sp)
2101
{
2102 2103
	unsigned i;

2104 2105
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2106 2107
}

2108
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2109
{
2110
	mmu_page_remove_parent_pte(sp, parent_pte);
2111 2112
}

2113
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2114
{
2115 2116
	u64 *sptep;
	struct rmap_iterator iter;
2117

2118 2119
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2120 2121
}

2122
static int mmu_zap_unsync_children(struct kvm *kvm,
2123 2124
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2125
{
2126 2127 2128
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2129

2130
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2131
		return 0;
2132 2133 2134 2135 2136 2137

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2138
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2139
			mmu_pages_clear_parents(&parents);
2140
			zapped++;
2141 2142 2143 2144 2145
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2146 2147
}

2148 2149
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2150
{
2151
	int ret;
A
Avi Kivity 已提交
2152

2153
	trace_kvm_mmu_prepare_zap_page(sp);
2154
	++kvm->stat.mmu_shadow_zapped;
2155
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2156
	kvm_mmu_page_unlink_children(kvm, sp);
2157
	kvm_mmu_unlink_parents(kvm, sp);
2158

2159
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2160
		unaccount_shadowed(kvm, sp->gfn);
2161

2162 2163
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2164
	if (!sp->root_count) {
2165 2166
		/* Count self */
		ret++;
2167
		list_move(&sp->link, invalid_list);
2168
		kvm_mod_used_mmu_pages(kvm, -1);
2169
	} else {
A
Avi Kivity 已提交
2170
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2171 2172 2173 2174 2175 2176 2177

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2178
	}
2179 2180

	sp->role.invalid = 1;
2181
	return ret;
2182 2183
}

2184 2185 2186
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2187
	struct kvm_mmu_page *sp, *nsp;
2188 2189 2190 2191

	if (list_empty(invalid_list))
		return;

2192 2193 2194 2195 2196
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2197

2198 2199 2200 2201 2202
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2203

2204
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2205
		WARN_ON(!sp->role.invalid || sp->root_count);
2206
		kvm_mmu_free_page(sp);
2207
	}
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2225 2226
/*
 * Changing the number of mmu pages allocated to the vm
2227
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2228
 */
2229
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2230
{
2231
	LIST_HEAD(invalid_list);
2232

2233 2234
	spin_lock(&kvm->mmu_lock);

2235
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2236 2237 2238 2239
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2240

2241
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2242
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2243 2244
	}

2245
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2246 2247

	spin_unlock(&kvm->mmu_lock);
2248 2249
}

2250
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2251
{
2252
	struct kvm_mmu_page *sp;
2253
	LIST_HEAD(invalid_list);
2254 2255
	int r;

2256
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2257
	r = 0;
2258
	spin_lock(&kvm->mmu_lock);
2259
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2260
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2261 2262
			 sp->role.word);
		r = 1;
2263
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2264
	}
2265
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2266 2267
	spin_unlock(&kvm->mmu_lock);

2268
	return r;
2269
}
2270
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2271

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2365
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2366 2367 2368 2369 2370 2371 2372 2373 2374
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2375
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2387 2388
{
	struct kvm_mmu_page *s;
2389

2390
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2391
		if (s->unsync)
2392
			continue;
2393 2394
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2395 2396 2397 2398 2399 2400
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2401 2402 2403
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2404
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2405 2406 2407
		if (!can_unsync)
			return 1;

2408
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2409
			return 1;
2410

G
Gleb Natapov 已提交
2411
		if (!s->unsync)
2412
			need_unsync = true;
2413
	}
2414 2415
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2416 2417 2418
	return 0;
}

A
Avi Kivity 已提交
2419
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2420
		    unsigned pte_access, int level,
2421
		    gfn_t gfn, pfn_t pfn, bool speculative,
2422
		    bool can_unsync, bool host_writable)
2423
{
2424
	u64 spte;
M
Marcelo Tosatti 已提交
2425
	int ret = 0;
S
Sheng Yang 已提交
2426

2427
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2428 2429
		return 0;

2430
	spte = PT_PRESENT_MASK;
2431
	if (!speculative)
2432
		spte |= shadow_accessed_mask;
2433

S
Sheng Yang 已提交
2434 2435 2436 2437
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2438

2439
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2440
		spte |= shadow_user_mask;
2441

2442
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2443
		spte |= PT_PAGE_SIZE_MASK;
2444
	if (tdp_enabled)
2445 2446
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2447

2448
	if (host_writable)
2449
		spte |= SPTE_HOST_WRITEABLE;
2450 2451
	else
		pte_access &= ~ACC_WRITE_MASK;
2452

2453
	spte |= (u64)pfn << PAGE_SHIFT;
2454

2455
	if (pte_access & ACC_WRITE_MASK) {
2456

X
Xiao Guangrong 已提交
2457
		/*
2458 2459 2460 2461
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2462
		 */
2463
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2464
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2465
			goto done;
2466

2467
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2468

2469 2470 2471 2472 2473 2474
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2475
		if (!can_unsync && is_writable_pte(*sptep))
2476 2477
			goto set_pte;

2478
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2479
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2480
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2481
			ret = 1;
2482
			pte_access &= ~ACC_WRITE_MASK;
2483
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2484 2485 2486 2487 2488 2489
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2490
set_pte:
2491
	if (mmu_spte_update(sptep, spte))
2492
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2493
done:
M
Marcelo Tosatti 已提交
2494 2495 2496
	return ret;
}

A
Avi Kivity 已提交
2497
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2498 2499 2500
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2501 2502
{
	int was_rmapped = 0;
2503
	int rmap_count;
M
Marcelo Tosatti 已提交
2504

2505 2506
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2507

A
Avi Kivity 已提交
2508
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2509 2510 2511 2512
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2513 2514
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2515
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2516
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2517 2518

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2519
			drop_parent_pte(child, sptep);
2520
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2521
		} else if (pfn != spte_to_pfn(*sptep)) {
2522
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2523
				 spte_to_pfn(*sptep), pfn);
2524
			drop_spte(vcpu->kvm, sptep);
2525
			kvm_flush_remote_tlbs(vcpu->kvm);
2526 2527
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2528
	}
2529

2530 2531
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2532
		if (write_fault)
2533
			*emulate = 1;
2534
		kvm_mmu_flush_tlb(vcpu);
2535
	}
M
Marcelo Tosatti 已提交
2536

2537 2538 2539
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2540
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2541
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2542
		 is_large_pte(*sptep)? "2MB" : "4kB",
2543 2544
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2545
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2546 2547
		++vcpu->kvm->stat.lpages;

2548 2549 2550 2551 2552 2553
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2554
	}
2555

X
Xiao Guangrong 已提交
2556
	kvm_release_pfn_clean(pfn);
2557 2558
}

2559 2560 2561 2562 2563
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2564
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2565
	if (!slot)
2566
		return KVM_PFN_ERR_FAULT;
2567

2568
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2581
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2582 2583 2584 2585 2586 2587 2588
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2589
		mmu_set_spte(vcpu, start, access, 0, NULL,
2590 2591
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2608
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2639
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2640 2641
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2642
{
2643
	struct kvm_shadow_walk_iterator iterator;
2644
	struct kvm_mmu_page *sp;
2645
	int emulate = 0;
2646
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2647

2648 2649 2650
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2651
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2652
		if (iterator.level == level) {
2653
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2654 2655
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2656
			direct_pte_prefetch(vcpu, iterator.sptep);
2657 2658
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2659 2660
		}

2661
		drop_large_spte(vcpu, iterator.sptep);
2662
		if (!is_shadow_present_pte(*iterator.sptep)) {
2663 2664 2665 2666
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2667 2668 2669
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2670

2671
			link_shadow_page(iterator.sptep, sp, true);
2672 2673
		}
	}
2674
	return emulate;
A
Avi Kivity 已提交
2675 2676
}

H
Huang Ying 已提交
2677
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2678
{
H
Huang Ying 已提交
2679 2680 2681 2682 2683 2684 2685
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2686

H
Huang Ying 已提交
2687
	send_sig_info(SIGBUS, &info, tsk);
2688 2689
}

2690
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2691
{
X
Xiao Guangrong 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2701
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2702
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2703
		return 0;
2704
	}
2705

2706
	return -EFAULT;
2707 2708
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2722
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2744
			kvm_get_pfn(pfn);
2745 2746 2747 2748 2749
			*pfnp = pfn;
		}
	}
}

2750 2751 2752 2753 2754 2755
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2756
	if (unlikely(is_error_pfn(pfn))) {
2757 2758 2759 2760
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2761
	if (unlikely(is_noslot_pfn(pfn)))
2762 2763 2764 2765 2766 2767 2768
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2769
static bool page_fault_can_be_fast(u32 error_code)
2770
{
2771 2772 2773 2774 2775 2776 2777
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2791 2792
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2819
	struct kvm_mmu_page *sp;
2820 2821 2822
	bool ret = false;
	u64 spte = 0ull;

2823 2824 2825
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2826
	if (!page_fault_can_be_fast(error_code))
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2843 2844
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2878 2879 2880 2881 2882
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2883
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2884
exit:
X
Xiao Guangrong 已提交
2885 2886
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2887 2888 2889 2890 2891
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2892
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2893
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2894
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2895

2896 2897
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2898 2899
{
	int r;
2900
	int level;
2901
	int force_pt_level;
2902
	pfn_t pfn;
2903
	unsigned long mmu_seq;
2904
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2905

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2916

2917 2918 2919
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2920

2921 2922 2923
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2924
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2925
	smp_rmb();
2926

2927
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2928
		return 0;
2929

2930 2931
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2932

2933
	spin_lock(&vcpu->kvm->mmu_lock);
2934
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2935
		goto out_unlock;
2936
	make_mmu_pages_available(vcpu);
2937 2938
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2939 2940
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2941 2942 2943
	spin_unlock(&vcpu->kvm->mmu_lock);


2944
	return r;
2945 2946 2947 2948 2949

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2950 2951 2952
}


2953 2954 2955
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2956
	struct kvm_mmu_page *sp;
2957
	LIST_HEAD(invalid_list);
2958

2959
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2960
		return;
2961

2962 2963 2964
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2965
		hpa_t root = vcpu->arch.mmu.root_hpa;
2966

2967
		spin_lock(&vcpu->kvm->mmu_lock);
2968 2969
		sp = page_header(root);
		--sp->root_count;
2970 2971 2972 2973
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2974
		spin_unlock(&vcpu->kvm->mmu_lock);
2975
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2976 2977
		return;
	}
2978 2979

	spin_lock(&vcpu->kvm->mmu_lock);
2980
	for (i = 0; i < 4; ++i) {
2981
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2982

A
Avi Kivity 已提交
2983 2984
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2985 2986
			sp = page_header(root);
			--sp->root_count;
2987
			if (!sp->root_count && sp->role.invalid)
2988 2989
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2990
		}
2991
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2992
	}
2993
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2994
	spin_unlock(&vcpu->kvm->mmu_lock);
2995
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2996 2997
}

2998 2999 3000 3001 3002
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3003
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3004 3005 3006 3007 3008 3009
		ret = 1;
	}

	return ret;
}

3010 3011 3012
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3013
	unsigned i;
3014 3015 3016

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3017
		make_mmu_pages_available(vcpu);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3029
			make_mmu_pages_available(vcpu);
3030 3031
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3032 3033 3034 3035 3036 3037 3038
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3039
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3040 3041 3042 3043 3044 3045 3046
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3047
{
3048
	struct kvm_mmu_page *sp;
3049 3050 3051
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3052

3053
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3054

3055 3056 3057 3058 3059 3060 3061 3062
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3063
		hpa_t root = vcpu->arch.mmu.root_hpa;
3064 3065

		ASSERT(!VALID_PAGE(root));
3066

3067
		spin_lock(&vcpu->kvm->mmu_lock);
3068
		make_mmu_pages_available(vcpu);
3069 3070
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3071 3072
		root = __pa(sp->spt);
		++sp->root_count;
3073
		spin_unlock(&vcpu->kvm->mmu_lock);
3074
		vcpu->arch.mmu.root_hpa = root;
3075
		return 0;
3076
	}
3077

3078 3079
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3080 3081
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3082
	 */
3083 3084 3085 3086
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3087
	for (i = 0; i < 4; ++i) {
3088
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3089 3090

		ASSERT(!VALID_PAGE(root));
3091
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3092
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3093
			if (!is_present_gpte(pdptr)) {
3094
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3095 3096
				continue;
			}
A
Avi Kivity 已提交
3097
			root_gfn = pdptr >> PAGE_SHIFT;
3098 3099
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3100
		}
3101
		spin_lock(&vcpu->kvm->mmu_lock);
3102
		make_mmu_pages_available(vcpu);
3103
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3104
				      PT32_ROOT_LEVEL, 0,
3105
				      ACC_ALL, NULL);
3106 3107
		root = __pa(sp->spt);
		++sp->root_count;
3108 3109
		spin_unlock(&vcpu->kvm->mmu_lock);

3110
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3111
	}
3112
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3139
	return 0;
3140 3141
}

3142 3143 3144 3145 3146 3147 3148 3149
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3150 3151 3152 3153 3154
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3155 3156 3157
	if (vcpu->arch.mmu.direct_map)
		return;

3158 3159
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3160

3161
	vcpu_clear_mmio_info(vcpu, ~0ul);
3162
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3163
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3164 3165 3166
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3167
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3168 3169 3170 3171 3172
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3173
		if (root && VALID_PAGE(root)) {
3174 3175 3176 3177 3178
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3179
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3180 3181 3182 3183 3184 3185
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3186
	spin_unlock(&vcpu->kvm->mmu_lock);
3187
}
N
Nadav Har'El 已提交
3188
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3189

3190
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3191
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3192
{
3193 3194
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3195 3196 3197
	return vaddr;
}

3198
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3199 3200
					 u32 access,
					 struct x86_exception *exception)
3201
{
3202 3203
	if (exception)
		exception->error_code = 0;
3204 3205 3206
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3235 3236 3237
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3252
		return RET_MMIO_PF_EMULATE;
3253 3254 3255 3256 3257 3258 3259

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3260 3261 3262
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3263 3264
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3265 3266

		trace_handle_mmio_page_fault(addr, gfn, access);
3267
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3268
		return RET_MMIO_PF_EMULATE;
3269 3270 3271 3272 3273 3274 3275
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3276
		return RET_MMIO_PF_BUG;
3277 3278 3279 3280 3281

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3282
	return RET_MMIO_PF_RETRY;
3283 3284 3285 3286 3287 3288 3289 3290 3291
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3292
	WARN_ON(ret == RET_MMIO_PF_BUG);
3293 3294 3295
	return ret;
}

A
Avi Kivity 已提交
3296
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3297
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3298
{
3299
	gfn_t gfn;
3300
	int r;
A
Avi Kivity 已提交
3301

3302
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3303

3304 3305 3306 3307 3308 3309
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3310

3311 3312 3313
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3314

A
Avi Kivity 已提交
3315
	ASSERT(vcpu);
3316
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3317

3318
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3319

3320
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3321
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3322 3323
}

3324
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3325 3326
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3327

3328
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3329
	arch.gfn = gfn;
3330
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3331
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3332

3333
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3345
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3346
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3347 3348 3349
{
	bool async;

3350
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3351 3352 3353 3354

	if (!async)
		return false; /* *pfn has correct page already */

3355
	if (!prefault && can_do_async_pf(vcpu)) {
3356
		trace_kvm_try_async_get_page(gva, gfn);
3357 3358 3359 3360 3361 3362 3363 3364
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3365
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3366 3367 3368 3369

	return false;
}

G
Gleb Natapov 已提交
3370
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3371
			  bool prefault)
3372
{
3373
	pfn_t pfn;
3374
	int r;
3375
	int level;
3376
	int force_pt_level;
M
Marcelo Tosatti 已提交
3377
	gfn_t gfn = gpa >> PAGE_SHIFT;
3378
	unsigned long mmu_seq;
3379 3380
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3381 3382 3383 3384

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3385 3386 3387 3388 3389 3390
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3391

3392 3393 3394 3395
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3396 3397 3398 3399 3400 3401
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3402

3403 3404 3405
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3406
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3407
	smp_rmb();
3408

3409
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3410 3411
		return 0;

3412 3413 3414
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3415
	spin_lock(&vcpu->kvm->mmu_lock);
3416
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3417
		goto out_unlock;
3418
	make_mmu_pages_available(vcpu);
3419 3420
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3421
	r = __direct_map(vcpu, gpa, write, map_writable,
3422
			 level, gfn, pfn, prefault);
3423 3424 3425
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3426 3427 3428 3429 3430

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3431 3432
}

3433 3434
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3435 3436 3437
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3438
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3439
	context->invlpg = nonpaging_invlpg;
3440
	context->update_pte = nonpaging_update_pte;
3441
	context->root_level = 0;
A
Avi Kivity 已提交
3442
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3443
	context->root_hpa = INVALID_PAGE;
3444
	context->direct_map = true;
3445
	context->nx = false;
A
Avi Kivity 已提交
3446 3447
}

3448
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3449
{
A
Avi Kivity 已提交
3450
	++vcpu->stat.tlb_flush;
3451
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3452
}
N
Nadav Har'El 已提交
3453
EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
A
Avi Kivity 已提交
3454

3455
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3456
{
3457
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3458 3459
}

3460 3461
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3462
	return kvm_read_cr3(vcpu);
3463 3464
}

3465 3466
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3467
{
3468
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3469 3470
}

3471 3472
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3473 3474 3475 3476 3477 3478 3479 3480
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3481
		mark_mmio_spte(kvm, sptep, gfn, access);
3482 3483 3484 3485 3486 3487
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3497 3498 3499 3500 3501
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3502 3503 3504 3505 3506 3507 3508 3509
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3510
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3511
				  struct kvm_mmu *context)
3512 3513 3514
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3515
	u64 gbpages_bit_rsvd = 0;
3516

3517 3518
	context->bad_mt_xwr = 0;

3519
	if (!context->nx)
3520
		exb_bit_rsvd = rsvd_bits(63, 63);
3521 3522
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3523
	switch (context->root_level) {
3524 3525 3526 3527
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3528 3529 3530 3531 3532 3533 3534
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3535 3536 3537 3538 3539 3540 3541 3542
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3543 3544
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3545
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3546
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3547
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3548 3549 3550 3551 3552
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3553
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3554 3555 3556
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3557
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3558
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3559
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3560
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3561
			rsvd_bits(maxphyaddr, 51);
3562 3563 3564
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3565
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3566
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3567
			rsvd_bits(13, 29);
3568
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3569 3570
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3571
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3572 3573 3574 3575
		break;
	}
}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3608
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3609
		struct kvm_mmu *mmu, bool ept)
3610 3611 3612
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3613
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3614

F
Feng Wu 已提交
3615
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3616
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3617 3618 3619 3620 3621 3622
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3623 3624 3625 3626 3627 3628
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3629 3630 3631 3632 3633
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3634 3635 3636 3637 3638 3639
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3640
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3661 3662 3663
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3664

F
Feng Wu 已提交
3665 3666
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3667 3668 3669 3670 3671 3672
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3691 3692 3693
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3694
{
3695
	context->nx = is_nx(vcpu);
3696
	context->root_level = level;
3697

3698
	reset_rsvds_bits_mask(vcpu, context);
3699
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3700
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3701 3702 3703 3704

	ASSERT(is_pae(vcpu));
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3705
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3706
	context->invlpg = paging64_invlpg;
3707
	context->update_pte = paging64_update_pte;
3708
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3709
	context->root_hpa = INVALID_PAGE;
3710
	context->direct_map = false;
A
Avi Kivity 已提交
3711 3712
}

3713 3714
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3715
{
3716
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3717 3718
}

3719 3720
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3721
{
3722
	context->nx = false;
3723
	context->root_level = PT32_ROOT_LEVEL;
3724

3725
	reset_rsvds_bits_mask(vcpu, context);
3726
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3727
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3728 3729 3730

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3731
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3732
	context->invlpg = paging32_invlpg;
3733
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3734
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3735
	context->root_hpa = INVALID_PAGE;
3736
	context->direct_map = false;
A
Avi Kivity 已提交
3737 3738
}

3739 3740
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3741
{
3742
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3743 3744
}

3745
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3746
{
3747
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3748

3749
	context->base_role.word = 0;
3750
	context->page_fault = tdp_page_fault;
3751
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3752
	context->invlpg = nonpaging_invlpg;
3753
	context->update_pte = nonpaging_update_pte;
3754
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3755
	context->root_hpa = INVALID_PAGE;
3756
	context->direct_map = true;
3757
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3758
	context->get_cr3 = get_cr3;
3759
	context->get_pdptr = kvm_pdptr_read;
3760
	context->inject_page_fault = kvm_inject_page_fault;
3761 3762

	if (!is_paging(vcpu)) {
3763
		context->nx = false;
3764 3765 3766
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3767
		context->nx = is_nx(vcpu);
3768
		context->root_level = PT64_ROOT_LEVEL;
3769 3770
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3771
	} else if (is_pae(vcpu)) {
3772
		context->nx = is_nx(vcpu);
3773
		context->root_level = PT32E_ROOT_LEVEL;
3774 3775
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3776
	} else {
3777
		context->nx = false;
3778
		context->root_level = PT32_ROOT_LEVEL;
3779 3780
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3781 3782
	}

3783
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3784
	update_last_pte_bitmap(vcpu, context);
3785 3786
}

3787
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3788
{
3789
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3790
	ASSERT(vcpu);
3791
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3792 3793

	if (!is_paging(vcpu))
3794
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3795
	else if (is_long_mode(vcpu))
3796
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3797
	else if (is_pae(vcpu))
3798
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3799
	else
3800
		paging32_init_context(vcpu, context);
3801

3802
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3803
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3804
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3805 3806
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3807 3808 3809
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3810
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
N
Nadav Har'El 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
		bool execonly)
{
	ASSERT(vcpu);
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3833
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3834
{
3835
	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3836 3837
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3838
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3839
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3840 3841
}

3842
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3843 3844 3845 3846
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3847
	g_context->get_pdptr         = kvm_pdptr_read;
3848 3849 3850 3851 3852 3853 3854 3855 3856
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3857
		g_context->nx = false;
3858 3859 3860
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3861
		g_context->nx = is_nx(vcpu);
3862
		g_context->root_level = PT64_ROOT_LEVEL;
3863
		reset_rsvds_bits_mask(vcpu, g_context);
3864 3865
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3866
		g_context->nx = is_nx(vcpu);
3867
		g_context->root_level = PT32E_ROOT_LEVEL;
3868
		reset_rsvds_bits_mask(vcpu, g_context);
3869 3870
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3871
		g_context->nx = false;
3872
		g_context->root_level = PT32_ROOT_LEVEL;
3873
		reset_rsvds_bits_mask(vcpu, g_context);
3874 3875 3876
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3877
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3878
	update_last_pte_bitmap(vcpu, g_context);
3879 3880
}

3881
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3882
{
3883 3884 3885
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3886 3887 3888 3889 3890
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

3891
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3892 3893 3894
{
	ASSERT(vcpu);

3895
	kvm_mmu_unload(vcpu);
3896
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3897
}
3898
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3899 3900

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3901
{
3902 3903
	int r;

3904
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3905 3906
	if (r)
		goto out;
3907
	r = mmu_alloc_roots(vcpu);
3908
	kvm_mmu_sync_roots(vcpu);
3909 3910
	if (r)
		goto out;
3911
	/* set_cr3() should ensure TLB has been flushed */
3912
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3913 3914
out:
	return r;
A
Avi Kivity 已提交
3915
}
A
Avi Kivity 已提交
3916 3917 3918 3919 3920
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3921
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3922
}
3923
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3924

3925
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3926 3927
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3928
{
3929
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3930 3931
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3932
        }
3933

A
Avi Kivity 已提交
3934
	++vcpu->kvm->stat.mmu_pte_updated;
3935
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3936 3937
}

3938 3939 3940 3941 3942 3943 3944 3945
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3946 3947
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3948 3949 3950
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3951 3952
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3953
{
3954 3955 3956 3957
	if (zap_page)
		return;

	if (remote_flush)
3958
		kvm_flush_remote_tlbs(vcpu->kvm);
3959
	else if (local_flush)
3960 3961 3962
		kvm_mmu_flush_tlb(vcpu);
}

3963 3964
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3965
{
3966 3967
	u64 gentry;
	int r;
3968 3969 3970

	/*
	 * Assume that the pte write on a page table of the same type
3971 3972
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3973
	 */
3974
	if (is_pae(vcpu) && *bytes == 4) {
3975
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3976 3977
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3978
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3979 3980
		if (r)
			gentry = 0;
3981 3982 3983
		new = (const u8 *)&gentry;
	}

3984
	switch (*bytes) {
3985 3986 3987 3988 3989 3990 3991 3992 3993
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3994 3995
	}

3996 3997 3998 3999 4000 4001 4002
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4003
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4004
{
4005 4006 4007 4008
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4009
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4010
		return false;
4011

4012
	return ++sp->write_flooding_count >= 3;
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4029 4030 4031 4032 4033 4034 4035 4036

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4083
	bool remote_flush, local_flush, zap_page;
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4107
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4108

4109
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4110
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4111
		if (detect_write_misaligned(sp, gpa, bytes) ||
4112
		      detect_write_flooding(sp)) {
4113
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4114
						     &invalid_list);
A
Avi Kivity 已提交
4115
			++vcpu->kvm->stat.mmu_flooded;
4116 4117
			continue;
		}
4118 4119 4120 4121 4122

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4123
		local_flush = true;
4124
		while (npte--) {
4125
			entry = *spte;
4126
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4127 4128
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4129
			      & mask.word) && rmap_can_add(vcpu))
4130
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4131
			if (need_remote_flush(entry, *spte))
4132
				remote_flush = true;
4133
			++spte;
4134 4135
		}
	}
4136
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4137
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4138
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4139
	spin_unlock(&vcpu->kvm->mmu_lock);
4140 4141
}

4142 4143
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4144 4145
	gpa_t gpa;
	int r;
4146

4147
	if (vcpu->arch.mmu.direct_map)
4148 4149
		return 0;

4150
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4151 4152

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4153

4154
	return r;
4155
}
4156
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4157

4158
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4159
{
4160
	LIST_HEAD(invalid_list);
4161

4162 4163 4164
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4165 4166 4167
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4168

A
Avi Kivity 已提交
4169
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4170
	}
4171
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4172 4173
}

4174 4175 4176 4177 4178 4179 4180 4181
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4182 4183
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4184
{
4185
	int r, emulation_type = EMULTYPE_RETRY;
4186 4187
	enum emulation_result er;

G
Gleb Natapov 已提交
4188
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4189 4190 4191 4192 4193 4194 4195 4196
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4197 4198 4199 4200
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4201 4202 4203 4204

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4205
	case EMULATE_USER_EXIT:
4206
		++vcpu->stat.mmio_exits;
4207
		/* fall through */
4208
	case EMULATE_FAIL:
4209
		return 0;
4210 4211 4212 4213 4214 4215 4216 4217
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4218 4219 4220 4221 4222 4223 4224 4225
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4226 4227 4228 4229 4230 4231
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4232 4233 4234 4235 4236 4237
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4238 4239
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4240
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4241 4242
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4243 4244 4245 4246
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4247
	struct page *page;
A
Avi Kivity 已提交
4248 4249 4250 4251
	int i;

	ASSERT(vcpu);

4252 4253 4254 4255 4256 4257 4258
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4259 4260
		return -ENOMEM;

4261
	vcpu->arch.mmu.pae_root = page_address(page);
4262
	for (i = 0; i < 4; ++i)
4263
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4264

A
Avi Kivity 已提交
4265 4266 4267
	return 0;
}

4268
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4269 4270
{
	ASSERT(vcpu);
4271 4272 4273 4274 4275

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4276

4277 4278
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4279

4280
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4281 4282
{
	ASSERT(vcpu);
4283
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4284

4285
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4286 4287
}

4288
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4289
{
4290 4291 4292
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4293

4294 4295
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4296

4297 4298
	spin_lock(&kvm->mmu_lock);

4299 4300 4301 4302
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4303

4304 4305
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4306

4307 4308 4309
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4310

4311
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4312
				cond_resched_lock(&kvm->mmu_lock);
4313
		}
A
Avi Kivity 已提交
4314
	}
4315

4316
	spin_unlock(&kvm->mmu_lock);
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
	kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4337
}
4338

X
Xiao Guangrong 已提交
4339
#define BATCH_ZAP_PAGES	10
4340 4341 4342
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4343
	int batch = 0;
4344 4345 4346 4347

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4348 4349
		int ret;

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4365 4366 4367 4368
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4369
		if (batch >= BATCH_ZAP_PAGES &&
4370
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4371
			batch = 0;
4372 4373 4374
			goto restart;
		}

4375 4376
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4377 4378 4379
		batch += ret;

		if (ret)
4380 4381 4382
			goto restart;
	}

4383 4384 4385 4386
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4387
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4402
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4403 4404
	kvm->arch.mmu_valid_gen++;

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4416 4417 4418 4419
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4420 4421 4422 4423 4424
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4425 4426 4427 4428 4429 4430
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4431
	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4432
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4433
		kvm_mmu_invalidate_zap_all_pages(kvm);
4434
	}
4435 4436
}

4437 4438
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4439 4440
{
	struct kvm *kvm;
4441
	int nr_to_scan = sc->nr_to_scan;
4442
	unsigned long freed = 0;
4443

4444
	spin_lock(&kvm_lock);
4445 4446

	list_for_each_entry(kvm, &vm_list, vm_list) {
4447
		int idx;
4448
		LIST_HEAD(invalid_list);
4449

4450 4451 4452 4453 4454 4455 4456 4457
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4458 4459 4460 4461 4462 4463
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4464 4465
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4466 4467
			continue;

4468
		idx = srcu_read_lock(&kvm->srcu);
4469 4470
		spin_lock(&kvm->mmu_lock);

4471 4472 4473 4474 4475 4476
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4477 4478
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4479
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4480

4481
unlock:
4482
		spin_unlock(&kvm->mmu_lock);
4483
		srcu_read_unlock(&kvm->srcu, idx);
4484

4485 4486 4487 4488 4489
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4490 4491
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4492 4493
	}

4494
	spin_unlock(&kvm_lock);
4495 4496 4497 4498 4499 4500
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4501
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4502 4503 4504
}

static struct shrinker mmu_shrinker = {
4505 4506
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4507 4508 4509
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4510
static void mmu_destroy_caches(void)
4511
{
4512 4513
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4514 4515
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4516 4517 4518 4519
}

int kvm_mmu_module_init(void)
{
4520 4521
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4522
					    0, 0, NULL);
4523
	if (!pte_list_desc_cache)
4524 4525
		goto nomem;

4526 4527
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4528
						  0, 0, NULL);
4529 4530 4531
	if (!mmu_page_header_cache)
		goto nomem;

4532 4533 4534
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4535 4536
	register_shrinker(&mmu_shrinker);

4537 4538 4539
	return 0;

nomem:
4540
	mmu_destroy_caches();
4541 4542 4543
	return -ENOMEM;
}

4544 4545 4546 4547 4548 4549 4550
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4551
	struct kvm_memslots *slots;
4552
	struct kvm_memory_slot *memslot;
4553

4554 4555
	slots = kvm_memslots(kvm);

4556 4557
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4558 4559 4560 4561 4562 4563 4564 4565

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4566 4567 4568
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4569
	u64 spte;
4570 4571
	int nr_sptes = 0;

4572 4573 4574
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4575 4576 4577
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4578
		nr_sptes++;
4579
		if (!is_shadow_present_pte(spte))
4580 4581
			break;
	}
4582
	walk_shadow_page_lockless_end(vcpu);
4583 4584 4585 4586 4587

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4588 4589 4590 4591
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

4592
	kvm_mmu_unload(vcpu);
4593 4594
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4595 4596 4597 4598 4599 4600 4601
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4602 4603
	mmu_audit_disable();
}