mmu.c 109.9 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
A
Avi Kivity 已提交
25

26
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
27 28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/uaccess.h>
A
Avi Kivity 已提交
38

A
Avi Kivity 已提交
39 40
#include <asm/page.h>
#include <asm/cmpxchg.h>
41
#include <asm/io.h>
42
#include <asm/vmx.h>
A
Avi Kivity 已提交
43

44 45 46 47 48 49 50
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
51
bool tdp_enabled = false;
52

53 54 55 56
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
57 58 59
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
60
};
61

62
#undef MMU_DEBUG
63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

76
#ifdef MMU_DEBUG
77
static bool dbg = 0;
78
module_param(dbg, bool, 0644);
79
#endif
A
Avi Kivity 已提交
80

81 82 83
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
84 85 86 87 88
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
89
#endif
A
Avi Kivity 已提交
90

91 92
#define PTE_PREFETCH_NUM		8

93
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
94 95 96 97 98
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
100 101 102 103 104 105 106 107

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
108
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
109

110 111 112
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
113 114 115 116 117

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


118
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
119 120
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 122 123 124 125 126
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
			| PT64_NX_MASK)
A
Avi Kivity 已提交
137

138 139 140 141 142
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

143 144
#include <trace/events/kvm.h>

145 146 147
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

148 149
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150

151 152
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

153 154 155
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

156 157 158
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
159 160
};

161 162 163 164
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
165
	int level;
166 167 168 169 170 171 172 173
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

174 175 176 177 178 179
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

180
static struct kmem_cache *pte_list_desc_cache;
181
static struct kmem_cache *mmu_page_header_cache;
182
static struct percpu_counter kvm_total_used_mmu_pages;
183

S
Sheng Yang 已提交
184 185 186 187 188
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
189 190 191
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
192
static void mmu_free_roots(struct kvm_vcpu *vcpu);
193 194 195 196 197 198 199

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

200 201 202 203 204 205 206 207
/*
 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 * number.
 */
#define MMIO_SPTE_GEN_LOW_SHIFT		3
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

208
#define MMIO_GEN_SHIFT			19
209 210
#define MMIO_GEN_LOW_SHIFT		9
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 212
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

236 237
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
238 239 240 241 242 243
	/*
	 * Init kvm generation close to MMIO_MAX_GEN to easily test the
	 * code of handling generation number wrap-around.
	 */
	return (kvm_memslots(kvm)->generation +
		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 245
}

246 247
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
248
{
249 250
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
251

252
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 254
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

255
	trace_mark_mmio_spte(sptep, gfn, access, gen);
256
	mmu_spte_set(sptep, mask);
257 258 259 260 261 262 263 264 265
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
266 267
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
268 269 270 271
}

static unsigned get_mmio_spte_access(u64 spte)
{
272 273
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
274 275
}

276 277
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
278 279
{
	if (unlikely(is_noslot_pfn(pfn))) {
280
		mark_mmio_spte(kvm, sptep, gfn, access);
281 282 283 284 285
		return true;
	}

	return false;
}
286

287 288
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
289 290 291 292 293 294 295
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
296 297
}

298 299 300 301 302
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
303
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
305 306 307 308 309 310 311 312 313
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
314 315 316 317 318
static int is_cpuid_PSE36(void)
{
	return 1;
}

319 320
static int is_nx(struct kvm_vcpu *vcpu)
{
321
	return vcpu->arch.efer & EFER_NX;
322 323
}

324 325
static int is_shadow_present_pte(u64 pte)
{
326
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 328
}

M
Marcelo Tosatti 已提交
329 330 331 332 333
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

334
static int is_dirty_gpte(unsigned long pte)
335
{
A
Avi Kivity 已提交
336
	return pte & PT_DIRTY_MASK;
337 338
}

339
static int is_rmap_spte(u64 pte)
340
{
341
	return is_shadow_present_pte(pte);
342 343
}

344 345 346 347
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
348
	if (is_large_pte(pte))
349 350 351 352
		return 1;
	return 0;
}

353
static pfn_t spte_to_pfn(u64 pte)
354
{
355
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
356 357
}

358 359 360 361 362 363 364
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

365
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
366
static void __set_spte(u64 *sptep, u64 spte)
367
{
368
	*sptep = spte;
369 370
}

371
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
372
{
373 374 375 376 377 378 379
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
380 381 382 383 384

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
385 386 387 388 389 390

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
391
#else
392 393 394 395 396 397 398
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
399

400 401 402 403 404 405 406 407 408 409 410 411
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

412 413 414
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
415

416 417 418 419 420 421 422 423 424 425 426 427 428
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
429 430
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
447
	count_spte_clear(sptep, spte);
448 449 450 451 452 453 454 455 456 457 458
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
459 460
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
461
	count_spte_clear(sptep, spte);
462 463 464

	return orig.spte;
}
465 466 467 468

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
469 470 471 472 473 474 475 476 477 478 479 480 481 482
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
523 524
#endif

525 526
static bool spte_is_locklessly_modifiable(u64 spte)
{
527 528
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
529 530
}

531 532
static bool spte_has_volatile_bits(u64 spte)
{
533 534 535 536 537 538 539 540 541
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

542 543 544 545 546 547
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

548 549
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
550 551 552 553 554
		return false;

	return true;
}

555 556 557 558 559
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
574 575 576 577 578 579
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
580
 */
581
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
582
{
583
	u64 old_spte = *sptep;
584
	bool ret = false;
585 586

	WARN_ON(!is_rmap_spte(new_spte));
587

588 589 590 591
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
592

593
	if (!spte_has_volatile_bits(old_spte))
594
		__update_clear_spte_fast(sptep, new_spte);
595
	else
596
		old_spte = __update_clear_spte_slow(sptep, new_spte);
597

598 599 600 601 602
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
603 604 605
	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
		ret = true;

606
	if (!shadow_accessed_mask)
607
		return ret;
608 609 610 611 612

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
613 614

	return ret;
615 616
}

617 618 619 620 621 622 623 624 625 626 627
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
628
		__update_clear_spte_fast(sptep, 0ull);
629
	else
630
		old_spte = __update_clear_spte_slow(sptep, 0ull);
631 632 633 634 635

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
636 637 638 639 640 641 642 643

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

644 645 646 647 648 649 650 651 652 653 654 655 656 657
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
658
	__update_clear_spte_fast(sptep, 0ull);
659 660
}

661 662 663 664 665 666 667
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
668 669 670 671 672 673 674 675 676 677 678
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
679 680 681 682
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
683 684 685 686 687 688 689 690
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
691 692
}

693
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
694
				  struct kmem_cache *base_cache, int min)
695 696 697 698
{
	void *obj;

	if (cache->nobjs >= min)
699
		return 0;
700
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
701
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
702
		if (!obj)
703
			return -ENOMEM;
704 705
		cache->objects[cache->nobjs++] = obj;
	}
706
	return 0;
707 708
}

709 710 711 712 713
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

714 715
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
716 717
{
	while (mc->nobjs)
718
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
719 720
}

A
Avi Kivity 已提交
721
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
722
				       int min)
A
Avi Kivity 已提交
723
{
724
	void *page;
A
Avi Kivity 已提交
725 726 727 728

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
729
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
730 731
		if (!page)
			return -ENOMEM;
732
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
733 734 735 736 737 738 739
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
740
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
741 742
}

743
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
744
{
745 746
	int r;

747
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
748
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
749 750
	if (r)
		goto out;
751
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
752 753
	if (r)
		goto out;
754
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
755
				   mmu_page_header_cache, 4);
756 757
out:
	return r;
758 759 760 761
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
762 763
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
764
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
765 766
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
767 768
}

769
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
770 771 772 773 774 775 776 777
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

778
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
779
{
780
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
781 782
}

783
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
784
{
785
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
804
/*
805 806
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
807
 */
808 809 810
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
811 812 813
{
	unsigned long idx;

814
	idx = gfn_to_index(gfn, slot->base_gfn, level);
815
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
816 817 818 819
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
820
	struct kvm_memory_slot *slot;
821
	struct kvm_lpage_info *linfo;
822
	int i;
M
Marcelo Tosatti 已提交
823

A
Avi Kivity 已提交
824
	slot = gfn_to_memslot(kvm, gfn);
825 826
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
827 828
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
829
	}
830
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
831 832 833 834
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
835
	struct kvm_memory_slot *slot;
836
	struct kvm_lpage_info *linfo;
837
	int i;
M
Marcelo Tosatti 已提交
838

A
Avi Kivity 已提交
839
	slot = gfn_to_memslot(kvm, gfn);
840 841
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
842 843 844
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
845
	}
846
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
847 848
}

849 850 851
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
852
{
853
	struct kvm_memory_slot *slot;
854
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
855

A
Avi Kivity 已提交
856
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
857
	if (slot) {
858 859
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
860 861 862 863 864
	}

	return 1;
}

865
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
866
{
J
Joerg Roedel 已提交
867
	unsigned long page_size;
868
	int i, ret = 0;
M
Marcelo Tosatti 已提交
869

J
Joerg Roedel 已提交
870
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
871

872 873 874 875 876 877 878 879
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

880
	return ret;
M
Marcelo Tosatti 已提交
881 882
}

883 884 885
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
886 887
{
	struct kvm_memory_slot *slot;
888 889 890 891 892 893 894 895 896 897 898

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
899
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
900 901 902 903 904
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
905

906 907 908 909 910
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
911
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
912 913

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
914 915 916 917
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
918 919
}

920
/*
921
 * Pte mapping structures:
922
 *
923
 * If pte_list bit zero is zero, then pte_list point to the spte.
924
 *
925 926
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
927
 *
928
 * Returns the number of pte entries before the spte was added or zero if
929 930
 * the spte was not added.
 *
931
 */
932 933
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
934
{
935
	struct pte_list_desc *desc;
936
	int i, count = 0;
937

938 939 940 941 942 943 944
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
945
		desc->sptes[1] = spte;
946
		*pte_list = (unsigned long)desc | 1;
947
		++count;
948
	} else {
949 950 951
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
952
			desc = desc->more;
953
			count += PTE_LIST_EXT;
954
		}
955 956
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
957 958
			desc = desc->more;
		}
A
Avi Kivity 已提交
959
		for (i = 0; desc->sptes[i]; ++i)
960
			++count;
A
Avi Kivity 已提交
961
		desc->sptes[i] = spte;
962
	}
963
	return count;
964 965
}

966 967 968
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
969 970 971
{
	int j;

972
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
973
		;
A
Avi Kivity 已提交
974 975
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
976 977 978
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
979
		*pte_list = (unsigned long)desc->sptes[0];
980 981 982 983
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
984 985
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
986 987
}

988
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
989
{
990 991
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
992 993
	int i;

994 995
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
996
		BUG();
997 998 999 1000
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1001 1002
			BUG();
		}
1003
		*pte_list = 0;
1004
	} else {
1005 1006
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1007 1008
		prev_desc = NULL;
		while (desc) {
1009
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1010
				if (desc->sptes[i] == spte) {
1011
					pte_list_desc_remove_entry(pte_list,
1012
							       desc, i,
1013 1014 1015 1016 1017 1018
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1019
		pr_err("pte_list_remove: %p many->many\n", spte);
1020 1021 1022 1023
		BUG();
	}
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1044
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1045
				    struct kvm_memory_slot *slot)
1046
{
1047
	unsigned long idx;
1048

1049
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1050
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1061
	return __gfn_to_rmap(gfn, level, slot);
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1156
static void drop_spte(struct kvm *kvm, u64 *sptep)
1157
{
1158
	if (mmu_spte_clear_track_bits(sptep))
1159
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1183
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1184 1185
 * spte writ-protection is caused by protecting shadow page table.
 * @flush indicates whether tlb need be flushed.
1186 1187 1188 1189 1190 1191 1192
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1193
 *
1194
 * Return true if the spte is dropped.
1195
 */
1196 1197
static bool
spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1198 1199 1200
{
	u64 spte = *sptep;

1201 1202
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1203 1204 1205 1206
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1207 1208 1209 1210 1211
	if (__drop_large_spte(kvm, sptep)) {
		*flush |= true;
		return true;
	}

1212 1213
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1214
	spte = spte & ~PT_WRITABLE_MASK;
1215

1216 1217
	*flush |= mmu_spte_update(sptep, spte);
	return false;
1218 1219
}

1220
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1221
				 bool pt_protect)
1222
{
1223 1224
	u64 *sptep;
	struct rmap_iterator iter;
1225
	bool flush = false;
1226

1227 1228
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1229 1230 1231 1232
		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
			sptep = rmap_get_first(*rmapp, &iter);
			continue;
		}
1233

1234
		sptep = rmap_get_next(&iter);
1235
	}
1236

1237
	return flush;
1238 1239
}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1253 1254 1255
{
	unsigned long *rmapp;

1256
	while (mask) {
1257 1258
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1259
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1260

1261 1262 1263
		/* clear the first set bit */
		mask &= mask - 1;
	}
1264 1265
}

1266
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1267 1268
{
	struct kvm_memory_slot *slot;
1269 1270
	unsigned long *rmapp;
	int i;
1271
	bool write_protected = false;
1272 1273

	slot = gfn_to_memslot(kvm, gfn);
1274 1275 1276 1277

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1278
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1279 1280 1281
	}

	return write_protected;
1282 1283
}

F
Frederik Deweerdt 已提交
1284
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1285
			   struct kvm_memory_slot *slot, unsigned long data)
1286
{
1287 1288
	u64 *sptep;
	struct rmap_iterator iter;
1289 1290
	int need_tlb_flush = 0;

1291 1292 1293 1294 1295
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1296 1297
		need_tlb_flush = 1;
	}
1298

1299 1300 1301
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1302
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1303
			     struct kvm_memory_slot *slot, unsigned long data)
1304
{
1305 1306
	u64 *sptep;
	struct rmap_iterator iter;
1307
	int need_flush = 0;
1308
	u64 new_spte;
1309 1310 1311 1312 1313
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1314 1315 1316 1317 1318

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1319
		need_flush = 1;
1320

1321
		if (pte_write(*ptep)) {
1322 1323
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1324
		} else {
1325
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1326 1327 1328 1329
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1330
			new_spte &= ~shadow_accessed_mask;
1331 1332 1333 1334

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1335 1336
		}
	}
1337

1338 1339 1340 1341 1342 1343
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1344 1345 1346 1347 1348 1349
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1350
					       struct kvm_memory_slot *slot,
1351
					       unsigned long data))
1352
{
1353
	int j;
1354
	int ret = 0;
1355
	struct kvm_memslots *slots;
1356
	struct kvm_memory_slot *memslot;
1357

1358
	slots = kvm_memslots(kvm);
1359

1360
	kvm_for_each_memslot(memslot, slots) {
1361
		unsigned long hva_start, hva_end;
1362
		gfn_t gfn_start, gfn_end;
1363

1364 1365 1366 1367 1368 1369 1370
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1371
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1372
		 */
1373
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1374
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1375

1376 1377 1378 1379
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1380

1381 1382 1383 1384 1385 1386
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1387

1388
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1389

1390 1391
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1392 1393 1394
		}
	}

1395
	return ret;
1396 1397
}

1398 1399 1400
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1401
					 struct kvm_memory_slot *slot,
1402 1403 1404
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1405 1406 1407 1408
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1409 1410 1411
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1412 1413 1414 1415 1416
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1417 1418
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1419
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1420 1421
}

F
Frederik Deweerdt 已提交
1422
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1423
			 struct kvm_memory_slot *slot, unsigned long data)
1424
{
1425
	u64 *sptep;
1426
	struct rmap_iterator uninitialized_var(iter);
1427 1428
	int young = 0;

1429
	/*
1430 1431
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1432 1433 1434 1435 1436
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1437 1438 1439 1440
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1441

1442 1443
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1444
		BUG_ON(!is_shadow_present_pte(*sptep));
1445

1446
		if (*sptep & shadow_accessed_mask) {
1447
			young = 1;
1448 1449
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1450 1451
		}
	}
1452 1453 1454
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1455 1456 1457
	return young;
}

A
Andrea Arcangeli 已提交
1458
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1459
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1460
{
1461 1462
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1473 1474
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1475
		BUG_ON(!is_shadow_present_pte(*sptep));
1476

1477
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1478 1479 1480 1481 1482 1483 1484 1485
			young = 1;
			break;
		}
	}
out:
	return young;
}

1486 1487
#define RMAP_RECYCLE_THRESHOLD 1000

1488
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1489 1490
{
	unsigned long *rmapp;
1491 1492 1493
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1494

1495
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1496

1497
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1498 1499 1500
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1501 1502
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1503
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1504 1505
}

A
Andrea Arcangeli 已提交
1506 1507 1508 1509 1510
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1511
#ifdef MMU_DEBUG
1512
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1513
{
1514 1515 1516
	u64 *pos;
	u64 *end;

1517
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1518
		if (is_shadow_present_pte(*pos)) {
1519
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1520
			       pos, *pos);
A
Avi Kivity 已提交
1521
			return 0;
1522
		}
A
Avi Kivity 已提交
1523 1524
	return 1;
}
1525
#endif
A
Avi Kivity 已提交
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1539
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1540
{
1541
	ASSERT(is_empty_shadow_page(sp->spt));
1542
	hlist_del(&sp->hash_link);
1543 1544
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1545 1546
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1547
	kmem_cache_free(mmu_page_header_cache, sp);
1548 1549
}

1550 1551
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1552
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1553 1554
}

1555
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1556
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1557 1558 1559 1560
{
	if (!parent_pte)
		return;

1561
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1562 1563
}

1564
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1565 1566
				       u64 *parent_pte)
{
1567
	pte_list_remove(parent_pte, &sp->parent_ptes);
1568 1569
}

1570 1571 1572 1573
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1574
	mmu_spte_clear_no_track(parent_pte);
1575 1576
}

1577 1578
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1579
{
1580
	struct kvm_mmu_page *sp;
1581

1582 1583
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1584
	if (!direct)
1585
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1586
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1587 1588 1589 1590 1591 1592

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1593 1594 1595 1596 1597
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1598 1599
}

1600
static void mark_unsync(u64 *spte);
1601
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1602
{
1603
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1604 1605
}

1606
static void mark_unsync(u64 *spte)
1607
{
1608
	struct kvm_mmu_page *sp;
1609
	unsigned int index;
1610

1611
	sp = page_header(__pa(spte));
1612 1613
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1614
		return;
1615
	if (sp->unsync_children++)
1616
		return;
1617
	kvm_mmu_mark_parents_unsync(sp);
1618 1619
}

1620
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1621
			       struct kvm_mmu_page *sp)
1622 1623 1624 1625
{
	return 1;
}

M
Marcelo Tosatti 已提交
1626 1627 1628 1629
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1630 1631
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1632
				 const void *pte)
1633 1634 1635 1636
{
	WARN_ON(1);
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1647 1648
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1649
{
1650
	int i;
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1667

1668
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1669
		struct kvm_mmu_page *child;
1670 1671
		u64 ent = sp->spt[i];

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1701 1702 1703
	}


1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1715 1716 1717 1718 1719
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1720
	trace_kvm_mmu_sync_page(sp);
1721 1722 1723 1724
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1725 1726 1727 1728
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1729

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1740 1741 1742 1743 1744 1745 1746 1747
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1748

1749
/* @sp->gfn should be write-protected at the call site */
1750
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1751
			   struct list_head *invalid_list, bool clear_unsync)
1752
{
1753
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1754
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1755 1756 1757
		return 1;
	}

1758
	if (clear_unsync)
1759 1760
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1761
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1762
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1763 1764 1765 1766 1767 1768 1769
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1770 1771 1772
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1773
	LIST_HEAD(invalid_list);
1774 1775
	int ret;

1776
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1777
	if (ret)
1778 1779
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1780 1781 1782
	return ret;
}

1783 1784 1785 1786 1787 1788 1789
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1790 1791
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1792
{
1793
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1794 1795
}

1796 1797 1798 1799
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1800
	LIST_HEAD(invalid_list);
1801 1802
	bool flush = false;

1803
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1804
		if (!s->unsync)
1805 1806 1807
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1808
		kvm_unlink_unsync_page(vcpu->kvm, s);
1809
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1810
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1811
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1812 1813 1814 1815 1816
			continue;
		}
		flush = true;
	}

1817
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1818 1819 1820 1821
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1822 1823 1824
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1825 1826
};

1827 1828 1829 1830 1831 1832
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1833 1834 1835
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1854
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1855
{
1856 1857 1858 1859 1860
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1871 1872
}

1873 1874 1875
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1876
{
1877 1878 1879
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1880

1881 1882 1883 1884 1885 1886 1887
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1888
	LIST_HEAD(invalid_list);
1889 1890 1891

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1892
		bool protected = false;
1893 1894 1895 1896 1897 1898 1899

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1900
		for_each_sp(pages, sp, parents, i) {
1901
			kvm_sync_page(vcpu, sp, &invalid_list);
1902 1903
			mmu_pages_clear_parents(&parents);
		}
1904
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1905
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1906 1907
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1908 1909
}

1910 1911 1912 1913 1914 1915 1916 1917
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1930 1931 1932 1933 1934
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1935 1936 1937 1938
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1939
					     int direct,
1940
					     unsigned access,
1941
					     u64 *parent_pte)
1942 1943 1944
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1945 1946
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1947

1948
	role = vcpu->arch.mmu.base_role;
1949
	role.level = level;
1950
	role.direct = direct;
1951
	if (role.direct)
1952
		role.cr4_pae = 0;
1953
	role.access = access;
1954 1955
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1956 1957 1958 1959
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1960
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1961 1962 1963
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1964 1965
		if (!need_sync && sp->unsync)
			need_sync = true;
1966

1967 1968
		if (sp->role.word != role.word)
			continue;
1969

1970 1971
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1972

1973 1974
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1975
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1976 1977 1978
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1979

1980
		__clear_sp_write_flooding_count(sp);
1981 1982 1983
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1984
	++vcpu->kvm->stat.mmu_cache_miss;
1985
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1986 1987 1988 1989
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1990 1991
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1992
	if (!direct) {
1993 1994
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1995 1996 1997
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1998 1999
		account_shadowed(vcpu->kvm, gfn);
	}
2000
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2001
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2002
	trace_kvm_mmu_get_page(sp, true);
2003
	return sp;
2004 2005
}

2006 2007 2008 2009 2010 2011
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2012 2013 2014 2015 2016 2017

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2032

2033 2034 2035 2036 2037
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2038 2039
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2040
{
2041
	if (is_last_spte(spte, iterator->level)) {
2042 2043 2044 2045
		iterator->level = 0;
		return;
	}

2046
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2047 2048 2049
	--iterator->level;
}

2050 2051 2052 2053 2054
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2055 2056 2057 2058
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
{
	u64 spte;

X
Xiao Guangrong 已提交
2059 2060 2061
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;

2062
	mmu_spte_set(sptep, spte);
2063 2064
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2082
		drop_parent_pte(child, sptep);
2083 2084 2085 2086
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2087
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2088 2089 2090 2091 2092 2093 2094
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2095
		if (is_last_spte(pte, sp->role.level)) {
2096
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2097 2098 2099
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2100
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2101
			drop_parent_pte(child, spte);
2102
		}
X
Xiao Guangrong 已提交
2103 2104 2105 2106
		return true;
	}

	if (is_mmio_spte(pte))
2107
		mmu_spte_clear_no_track(spte);
2108

X
Xiao Guangrong 已提交
2109
	return false;
2110 2111
}

2112
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2113
					 struct kvm_mmu_page *sp)
2114
{
2115 2116
	unsigned i;

2117 2118
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2119 2120
}

2121
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2122
{
2123
	mmu_page_remove_parent_pte(sp, parent_pte);
2124 2125
}

2126
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2127
{
2128 2129
	u64 *sptep;
	struct rmap_iterator iter;
2130

2131 2132
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2133 2134
}

2135
static int mmu_zap_unsync_children(struct kvm *kvm,
2136 2137
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2138
{
2139 2140 2141
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2142

2143
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2144
		return 0;
2145 2146 2147 2148 2149 2150

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2151
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2152
			mmu_pages_clear_parents(&parents);
2153
			zapped++;
2154 2155 2156 2157 2158
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2159 2160
}

2161 2162
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2163
{
2164
	int ret;
A
Avi Kivity 已提交
2165

2166
	trace_kvm_mmu_prepare_zap_page(sp);
2167
	++kvm->stat.mmu_shadow_zapped;
2168
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2169
	kvm_mmu_page_unlink_children(kvm, sp);
2170
	kvm_mmu_unlink_parents(kvm, sp);
2171

2172
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2173
		unaccount_shadowed(kvm, sp->gfn);
2174

2175 2176
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2177
	if (!sp->root_count) {
2178 2179
		/* Count self */
		ret++;
2180
		list_move(&sp->link, invalid_list);
2181
		kvm_mod_used_mmu_pages(kvm, -1);
2182
	} else {
A
Avi Kivity 已提交
2183
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2184 2185 2186 2187 2188 2189 2190

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2191
	}
2192 2193

	sp->role.invalid = 1;
2194
	return ret;
2195 2196
}

2197 2198 2199
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2200
	struct kvm_mmu_page *sp, *nsp;
2201 2202 2203 2204

	if (list_empty(invalid_list))
		return;

2205 2206 2207 2208 2209
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2210

2211 2212 2213 2214 2215
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2216

2217
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2218
		WARN_ON(!sp->role.invalid || sp->root_count);
2219
		kvm_mmu_free_page(sp);
2220
	}
2221 2222
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2238 2239
/*
 * Changing the number of mmu pages allocated to the vm
2240
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2241
 */
2242
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2243
{
2244
	LIST_HEAD(invalid_list);
2245

2246 2247
	spin_lock(&kvm->mmu_lock);

2248
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2249 2250 2251 2252
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2253

2254
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2255
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2256 2257
	}

2258
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2259 2260

	spin_unlock(&kvm->mmu_lock);
2261 2262
}

2263
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2264
{
2265
	struct kvm_mmu_page *sp;
2266
	LIST_HEAD(invalid_list);
2267 2268
	int r;

2269
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2270
	r = 0;
2271
	spin_lock(&kvm->mmu_lock);
2272
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2273
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2274 2275
			 sp->role.word);
		r = 1;
2276
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2277
	}
2278
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2279 2280
	spin_unlock(&kvm->mmu_lock);

2281
	return r;
2282
}
2283
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2378
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2379 2380 2381 2382 2383 2384 2385 2386 2387
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2388
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2400 2401
{
	struct kvm_mmu_page *s;
2402

2403
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2404
		if (s->unsync)
2405
			continue;
2406 2407
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2408 2409 2410 2411 2412 2413
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2414 2415 2416
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2417
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2418 2419 2420
		if (!can_unsync)
			return 1;

2421
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2422
			return 1;
2423

G
Gleb Natapov 已提交
2424
		if (!s->unsync)
2425
			need_unsync = true;
2426
	}
2427 2428
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2429 2430 2431
	return 0;
}

A
Avi Kivity 已提交
2432
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2433
		    unsigned pte_access, int level,
2434
		    gfn_t gfn, pfn_t pfn, bool speculative,
2435
		    bool can_unsync, bool host_writable)
2436
{
2437
	u64 spte;
M
Marcelo Tosatti 已提交
2438
	int ret = 0;
S
Sheng Yang 已提交
2439

2440
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2441 2442
		return 0;

2443
	spte = PT_PRESENT_MASK;
2444
	if (!speculative)
2445
		spte |= shadow_accessed_mask;
2446

S
Sheng Yang 已提交
2447 2448 2449 2450
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2451

2452
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2453
		spte |= shadow_user_mask;
2454

2455
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2456
		spte |= PT_PAGE_SIZE_MASK;
2457
	if (tdp_enabled)
2458 2459
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2460

2461
	if (host_writable)
2462
		spte |= SPTE_HOST_WRITEABLE;
2463 2464
	else
		pte_access &= ~ACC_WRITE_MASK;
2465

2466
	spte |= (u64)pfn << PAGE_SHIFT;
2467

2468
	if (pte_access & ACC_WRITE_MASK) {
2469

X
Xiao Guangrong 已提交
2470
		/*
2471 2472 2473 2474
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2475
		 */
2476
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2477
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2478
			goto done;
2479

2480
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2481

2482 2483 2484 2485 2486 2487
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2488
		if (!can_unsync && is_writable_pte(*sptep))
2489 2490
			goto set_pte;

2491
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2492
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2493
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2494
			ret = 1;
2495
			pte_access &= ~ACC_WRITE_MASK;
2496
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2497 2498 2499 2500 2501 2502
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2503
set_pte:
2504
	if (mmu_spte_update(sptep, spte))
2505
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2506
done:
M
Marcelo Tosatti 已提交
2507 2508 2509
	return ret;
}

A
Avi Kivity 已提交
2510
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2511 2512 2513
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2514 2515
{
	int was_rmapped = 0;
2516
	int rmap_count;
M
Marcelo Tosatti 已提交
2517

2518 2519
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2520

A
Avi Kivity 已提交
2521
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2522 2523 2524 2525
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2526 2527
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2528
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2529
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2530 2531

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2532
			drop_parent_pte(child, sptep);
2533
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2534
		} else if (pfn != spte_to_pfn(*sptep)) {
2535
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2536
				 spte_to_pfn(*sptep), pfn);
2537
			drop_spte(vcpu->kvm, sptep);
2538
			kvm_flush_remote_tlbs(vcpu->kvm);
2539 2540
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2541
	}
2542

2543 2544
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2545
		if (write_fault)
2546
			*emulate = 1;
2547
		kvm_mmu_flush_tlb(vcpu);
2548
	}
M
Marcelo Tosatti 已提交
2549

2550 2551 2552
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2553
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2554
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2555
		 is_large_pte(*sptep)? "2MB" : "4kB",
2556 2557
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2558
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2559 2560
		++vcpu->kvm->stat.lpages;

2561 2562 2563 2564 2565 2566
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2567
	}
2568

X
Xiao Guangrong 已提交
2569
	kvm_release_pfn_clean(pfn);
2570 2571
}

A
Avi Kivity 已提交
2572 2573
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
{
2574
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584
static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	int bit7;

	bit7 = (gpte >> 7) & 1;
	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
}

2585 2586 2587 2588 2589
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2590
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2591
	if (!slot)
2592
		return KVM_PFN_ERR_FAULT;
2593

2594
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2595 2596
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *spte,
				  u64 gpte)
{
	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
		goto no_present;

	if (!is_present_gpte(gpte))
		goto no_present;

	if (!(gpte & PT_ACCESSED_MASK))
		goto no_present;

	return false;

no_present:
	drop_spte(vcpu->kvm, spte);
	return true;
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2627
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2628 2629 2630 2631 2632 2633 2634
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2635
		mmu_set_spte(vcpu, start, access, 0, NULL,
2636 2637
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2654
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2685
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2686 2687
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2688
{
2689
	struct kvm_shadow_walk_iterator iterator;
2690
	struct kvm_mmu_page *sp;
2691
	int emulate = 0;
2692
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2693

2694
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2695
		if (iterator.level == level) {
2696
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2697 2698
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2699
			direct_pte_prefetch(vcpu, iterator.sptep);
2700 2701
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2702 2703
		}

2704
		if (!is_shadow_present_pte(*iterator.sptep)) {
2705 2706 2707 2708
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2709 2710 2711
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2712

X
Xiao Guangrong 已提交
2713
			link_shadow_page(iterator.sptep, sp);
2714 2715
		}
	}
2716
	return emulate;
A
Avi Kivity 已提交
2717 2718
}

H
Huang Ying 已提交
2719
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2720
{
H
Huang Ying 已提交
2721 2722 2723 2724 2725 2726 2727
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2728

H
Huang Ying 已提交
2729
	send_sig_info(SIGBUS, &info, tsk);
2730 2731
}

2732
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2733
{
X
Xiao Guangrong 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2743
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2744
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2745
		return 0;
2746
	}
2747

2748
	return -EFAULT;
2749 2750
}

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2764
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2786
			kvm_get_pfn(pfn);
2787 2788 2789 2790 2791
			*pfnp = pfn;
		}
	}
}

2792 2793 2794 2795 2796 2797
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2798
	if (unlikely(is_error_pfn(pfn))) {
2799 2800 2801 2802
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2803
	if (unlikely(is_noslot_pfn(pfn)))
2804 2805 2806 2807 2808 2809 2810
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
{
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp = page_header(__pa(sptep));
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
	bool ret = false;
	u64 spte = 0ull;

	if (!page_fault_can_be_fast(vcpu, error_code))
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

	if (!is_last_spte(spte, level))
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
exit:
X
Xiao Guangrong 已提交
2902 2903
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2904 2905 2906 2907 2908
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2909
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2910
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2911
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2912

2913 2914
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2915 2916
{
	int r;
2917
	int level;
2918
	int force_pt_level;
2919
	pfn_t pfn;
2920
	unsigned long mmu_seq;
2921
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2933

2934 2935 2936
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2937

2938 2939 2940
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2941
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2942
	smp_rmb();
2943

2944
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2945
		return 0;
2946

2947 2948
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2949

2950
	spin_lock(&vcpu->kvm->mmu_lock);
2951
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2952
		goto out_unlock;
2953
	make_mmu_pages_available(vcpu);
2954 2955
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2956 2957
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2958 2959 2960
	spin_unlock(&vcpu->kvm->mmu_lock);


2961
	return r;
2962 2963 2964 2965 2966

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2967 2968 2969
}


2970 2971 2972
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2973
	struct kvm_mmu_page *sp;
2974
	LIST_HEAD(invalid_list);
2975

2976
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2977
		return;
2978

2979 2980 2981
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2982
		hpa_t root = vcpu->arch.mmu.root_hpa;
2983

2984
		spin_lock(&vcpu->kvm->mmu_lock);
2985 2986
		sp = page_header(root);
		--sp->root_count;
2987 2988 2989 2990
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2991
		spin_unlock(&vcpu->kvm->mmu_lock);
2992
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2993 2994
		return;
	}
2995 2996

	spin_lock(&vcpu->kvm->mmu_lock);
2997
	for (i = 0; i < 4; ++i) {
2998
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2999

A
Avi Kivity 已提交
3000 3001
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3002 3003
			sp = page_header(root);
			--sp->root_count;
3004
			if (!sp->root_count && sp->role.invalid)
3005 3006
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3007
		}
3008
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3009
	}
3010
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3011
	spin_unlock(&vcpu->kvm->mmu_lock);
3012
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3013 3014
}

3015 3016 3017 3018 3019
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3020
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021 3022 3023 3024 3025 3026
		ret = 1;
	}

	return ret;
}

3027 3028 3029
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3030
	unsigned i;
3031 3032 3033

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3034
		make_mmu_pages_available(vcpu);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3046
			make_mmu_pages_available(vcpu);
3047 3048
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3049 3050 3051 3052 3053 3054 3055
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3056
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3057 3058 3059 3060 3061 3062 3063
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3064
{
3065
	struct kvm_mmu_page *sp;
3066 3067 3068
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3069

3070
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3071

3072 3073 3074 3075 3076 3077 3078 3079
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3080
		hpa_t root = vcpu->arch.mmu.root_hpa;
3081 3082

		ASSERT(!VALID_PAGE(root));
3083

3084
		spin_lock(&vcpu->kvm->mmu_lock);
3085
		make_mmu_pages_available(vcpu);
3086 3087
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3088 3089
		root = __pa(sp->spt);
		++sp->root_count;
3090
		spin_unlock(&vcpu->kvm->mmu_lock);
3091
		vcpu->arch.mmu.root_hpa = root;
3092
		return 0;
3093
	}
3094

3095 3096
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3097 3098
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3099
	 */
3100 3101 3102 3103
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3104
	for (i = 0; i < 4; ++i) {
3105
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3106 3107

		ASSERT(!VALID_PAGE(root));
3108
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3109
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3110
			if (!is_present_gpte(pdptr)) {
3111
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3112 3113
				continue;
			}
A
Avi Kivity 已提交
3114
			root_gfn = pdptr >> PAGE_SHIFT;
3115 3116
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3117
		}
3118
		spin_lock(&vcpu->kvm->mmu_lock);
3119
		make_mmu_pages_available(vcpu);
3120
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3121
				      PT32_ROOT_LEVEL, 0,
3122
				      ACC_ALL, NULL);
3123 3124
		root = __pa(sp->spt);
		++sp->root_count;
3125 3126
		spin_unlock(&vcpu->kvm->mmu_lock);

3127
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3128
	}
3129
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3156
	return 0;
3157 3158
}

3159 3160 3161 3162 3163 3164 3165 3166
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3167 3168 3169 3170 3171
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3172 3173 3174
	if (vcpu->arch.mmu.direct_map)
		return;

3175 3176
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3177

3178
	vcpu_clear_mmio_info(vcpu, ~0ul);
3179
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3180
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3181 3182 3183
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3184
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3185 3186 3187 3188 3189
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3190
		if (root && VALID_PAGE(root)) {
3191 3192 3193 3194 3195
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3196
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3197 3198 3199 3200 3201 3202
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3203
	spin_unlock(&vcpu->kvm->mmu_lock);
3204 3205
}

3206
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3207
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3208
{
3209 3210
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3211 3212 3213
	return vaddr;
}

3214
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3215 3216
					 u32 access,
					 struct x86_exception *exception)
3217
{
3218 3219
	if (exception)
		exception->error_code = 0;
3220 3221 3222
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3265
		return RET_MMIO_PF_EMULATE;
3266 3267 3268 3269 3270 3271 3272

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3273 3274 3275
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3276 3277
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3278 3279

		trace_handle_mmio_page_fault(addr, gfn, access);
3280
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3281
		return RET_MMIO_PF_EMULATE;
3282 3283 3284 3285 3286 3287 3288
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3289
		return RET_MMIO_PF_BUG;
3290 3291 3292 3293 3294

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3295
	return RET_MMIO_PF_RETRY;
3296 3297 3298 3299 3300 3301 3302 3303 3304
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3305
	WARN_ON(ret == RET_MMIO_PF_BUG);
3306 3307 3308
	return ret;
}

A
Avi Kivity 已提交
3309
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3310
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3311
{
3312
	gfn_t gfn;
3313
	int r;
A
Avi Kivity 已提交
3314

3315
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3316

3317 3318 3319 3320 3321 3322
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3323

3324 3325 3326
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3327

A
Avi Kivity 已提交
3328
	ASSERT(vcpu);
3329
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3330

3331
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3332

3333
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3334
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3335 3336
}

3337
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3338 3339
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3340

3341
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3342
	arch.gfn = gfn;
3343
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3344
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3358
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3359
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3360 3361 3362
{
	bool async;

3363
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3364 3365 3366 3367

	if (!async)
		return false; /* *pfn has correct page already */

3368
	if (!prefault && can_do_async_pf(vcpu)) {
3369
		trace_kvm_try_async_get_page(gva, gfn);
3370 3371 3372 3373 3374 3375 3376 3377
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3378
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3379 3380 3381 3382

	return false;
}

G
Gleb Natapov 已提交
3383
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3384
			  bool prefault)
3385
{
3386
	pfn_t pfn;
3387
	int r;
3388
	int level;
3389
	int force_pt_level;
M
Marcelo Tosatti 已提交
3390
	gfn_t gfn = gpa >> PAGE_SHIFT;
3391
	unsigned long mmu_seq;
3392 3393
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3394 3395 3396 3397

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3398 3399 3400 3401 3402 3403
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3404

3405 3406 3407 3408
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3409 3410 3411 3412 3413 3414
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3415

3416 3417 3418
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3419
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3420
	smp_rmb();
3421

3422
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3423 3424
		return 0;

3425 3426 3427
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3428
	spin_lock(&vcpu->kvm->mmu_lock);
3429
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3430
		goto out_unlock;
3431
	make_mmu_pages_available(vcpu);
3432 3433
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3434
	r = __direct_map(vcpu, gpa, write, map_writable,
3435
			 level, gfn, pfn, prefault);
3436 3437 3438
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3439 3440 3441 3442 3443

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3444 3445
}

A
Avi Kivity 已提交
3446 3447
static void nonpaging_free(struct kvm_vcpu *vcpu)
{
3448
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3449 3450
}

3451 3452
static int nonpaging_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3453 3454 3455 3456 3457
{
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
	context->free = nonpaging_free;
3458
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3459
	context->invlpg = nonpaging_invlpg;
3460
	context->update_pte = nonpaging_update_pte;
3461
	context->root_level = 0;
A
Avi Kivity 已提交
3462
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3463
	context->root_hpa = INVALID_PAGE;
3464
	context->direct_map = true;
3465
	context->nx = false;
A
Avi Kivity 已提交
3466 3467 3468
	return 0;
}

3469
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3470
{
A
Avi Kivity 已提交
3471
	++vcpu->stat.tlb_flush;
3472
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3473 3474 3475 3476
}

static void paging_new_cr3(struct kvm_vcpu *vcpu)
{
3477
	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3478
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3479 3480
}

3481 3482
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3483
	return kvm_read_cr3(vcpu);
3484 3485
}

3486 3487
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3488
{
3489
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3490 3491 3492 3493 3494 3495 3496
}

static void paging_free(struct kvm_vcpu *vcpu)
{
	nonpaging_free(vcpu);
}

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
{
	unsigned mask;

	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);

	mask = (unsigned)~ACC_WRITE_MASK;
	/* Allow write access to dirty gptes */
	mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
	*access &= mask;
}

3509 3510
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3511 3512 3513 3514 3515 3516 3517 3518
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3519
		mark_mmio_spte(kvm, sptep, gfn, access);
3520 3521 3522 3523 3524 3525
		return true;
	}

	return false;
}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
{
	unsigned access;

	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
	access &= ~(gpte >> PT64_NX_SHIFT);

	return access;
}

A
Avi Kivity 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

A
Avi Kivity 已提交
3545 3546 3547 3548 3549 3550 3551 3552
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3553
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3554
				  struct kvm_mmu *context)
3555 3556 3557 3558
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;

3559
	if (!context->nx)
3560
		exb_bit_rsvd = rsvd_bits(63, 63);
3561
	switch (context->root_level) {
3562 3563 3564 3565
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3566 3567 3568 3569 3570 3571 3572
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3573 3574 3575 3576 3577 3578 3579 3580
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3581 3582 3583
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3584
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3585
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3586 3587 3588 3589 3590
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3591
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3592 3593 3594 3595 3596 3597 3598
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3599
			rsvd_bits(maxphyaddr, 51);
3600 3601 3602
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3603 3604 3605
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 29);
3606
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3607 3608
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3609
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3610 3611 3612 3613
		break;
	}
}

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned bit, byte, pfec;
	u8 map;
	bool fault, x, w, u, wf, uf, ff, smep;

	smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

			/* Not really needed: !nx will cause pte.nx to fault */
			x |= !mmu->nx;
			/* Allow supervisor writes if !cr0.wp */
			w |= !is_write_protection(vcpu) && !uf;
			/* Disallow supervisor fetches of user code if cr4.smep */
			x &= !(smep && u && !uf);

			fault = (ff && !x) || (uf && !u) || (wf && !w);
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3664 3665 3666
static int paging64_init_context_common(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context,
					int level)
A
Avi Kivity 已提交
3667
{
3668
	context->nx = is_nx(vcpu);
3669
	context->root_level = level;
3670

3671
	reset_rsvds_bits_mask(vcpu, context);
3672
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3673
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3674 3675 3676 3677 3678

	ASSERT(is_pae(vcpu));
	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3679
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3680
	context->invlpg = paging64_invlpg;
3681
	context->update_pte = paging64_update_pte;
A
Avi Kivity 已提交
3682
	context->free = paging_free;
3683
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3684
	context->root_hpa = INVALID_PAGE;
3685
	context->direct_map = false;
A
Avi Kivity 已提交
3686 3687 3688
	return 0;
}

3689 3690
static int paging64_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
3691
{
3692
	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3693 3694
}

3695 3696
static int paging32_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
A
Avi Kivity 已提交
3697
{
3698
	context->nx = false;
3699
	context->root_level = PT32_ROOT_LEVEL;
3700

3701
	reset_rsvds_bits_mask(vcpu, context);
3702
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3703
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3704 3705 3706 3707 3708

	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
	context->free = paging_free;
3709
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3710
	context->invlpg = paging32_invlpg;
3711
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3712
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3713
	context->root_hpa = INVALID_PAGE;
3714
	context->direct_map = false;
A
Avi Kivity 已提交
3715 3716 3717
	return 0;
}

3718 3719
static int paging32E_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3720
{
3721
	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3722 3723
}

3724 3725
static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
3726
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3727

3728
	context->base_role.word = 0;
3729 3730 3731
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = tdp_page_fault;
	context->free = nonpaging_free;
3732
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3733
	context->invlpg = nonpaging_invlpg;
3734
	context->update_pte = nonpaging_update_pte;
3735
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3736
	context->root_hpa = INVALID_PAGE;
3737
	context->direct_map = true;
3738
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3739
	context->get_cr3 = get_cr3;
3740
	context->get_pdptr = kvm_pdptr_read;
3741
	context->inject_page_fault = kvm_inject_page_fault;
3742 3743

	if (!is_paging(vcpu)) {
3744
		context->nx = false;
3745 3746 3747
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3748
		context->nx = is_nx(vcpu);
3749
		context->root_level = PT64_ROOT_LEVEL;
3750 3751
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3752
	} else if (is_pae(vcpu)) {
3753
		context->nx = is_nx(vcpu);
3754
		context->root_level = PT32E_ROOT_LEVEL;
3755 3756
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3757
	} else {
3758
		context->nx = false;
3759
		context->root_level = PT32_ROOT_LEVEL;
3760 3761
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3762 3763
	}

3764
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3765
	update_last_pte_bitmap(vcpu, context);
3766

3767 3768 3769
	return 0;
}

3770
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3771
{
3772
	int r;
3773
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3774
	ASSERT(vcpu);
3775
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3776 3777

	if (!is_paging(vcpu))
3778
		r = nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3779
	else if (is_long_mode(vcpu))
3780
		r = paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3781
	else if (is_pae(vcpu))
3782
		r = paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3783
	else
3784
		r = paging32_init_context(vcpu, context);
3785

3786
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3787
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3788
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3789 3790
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3791 3792 3793 3794 3795 3796 3797

	return r;
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
3798
	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3799

3800 3801
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3802
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3803
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3804 3805

	return r;
A
Avi Kivity 已提交
3806 3807
}

3808 3809 3810 3811 3812
static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3813
	g_context->get_pdptr         = kvm_pdptr_read;
3814 3815 3816 3817 3818 3819 3820 3821 3822
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3823
		g_context->nx = false;
3824 3825 3826
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3827
		g_context->nx = is_nx(vcpu);
3828
		g_context->root_level = PT64_ROOT_LEVEL;
3829
		reset_rsvds_bits_mask(vcpu, g_context);
3830 3831
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3832
		g_context->nx = is_nx(vcpu);
3833
		g_context->root_level = PT32E_ROOT_LEVEL;
3834
		reset_rsvds_bits_mask(vcpu, g_context);
3835 3836
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3837
		g_context->nx = false;
3838
		g_context->root_level = PT32_ROOT_LEVEL;
3839
		reset_rsvds_bits_mask(vcpu, g_context);
3840 3841 3842
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3843
	update_permission_bitmask(vcpu, g_context);
A
Avi Kivity 已提交
3844
	update_last_pte_bitmap(vcpu, g_context);
3845

3846 3847 3848
	return 0;
}

3849 3850
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
{
3851 3852 3853
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3854 3855 3856 3857 3858
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

A
Avi Kivity 已提交
3859 3860 3861
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
3862 3863
	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
		/* mmu.free() should set root_hpa = INVALID_PAGE */
3864
		vcpu->arch.mmu.free(vcpu);
A
Avi Kivity 已提交
3865 3866 3867
}

int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3868 3869
{
	destroy_kvm_mmu(vcpu);
3870
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3871
}
3872
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3873 3874

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3875
{
3876 3877
	int r;

3878
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3879 3880
	if (r)
		goto out;
3881
	r = mmu_alloc_roots(vcpu);
3882
	kvm_mmu_sync_roots(vcpu);
3883 3884
	if (r)
		goto out;
3885
	/* set_cr3() should ensure TLB has been flushed */
3886
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3887 3888
out:
	return r;
A
Avi Kivity 已提交
3889
}
A
Avi Kivity 已提交
3890 3891 3892 3893 3894 3895
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
}
3896
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3897

3898
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3899 3900
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3901
{
3902
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3903 3904
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3905
        }
3906

A
Avi Kivity 已提交
3907
	++vcpu->kvm->stat.mmu_pte_updated;
3908
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3909 3910
}

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
	old ^= PT64_NX_MASK;
	new ^= PT64_NX_MASK;
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3924 3925
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3926
{
3927 3928 3929 3930
	if (zap_page)
		return;

	if (remote_flush)
3931
		kvm_flush_remote_tlbs(vcpu->kvm);
3932
	else if (local_flush)
3933 3934 3935
		kvm_mmu_flush_tlb(vcpu);
}

3936 3937
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3938
{
3939 3940
	u64 gentry;
	int r;
3941 3942 3943

	/*
	 * Assume that the pte write on a page table of the same type
3944 3945
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3946
	 */
3947
	if (is_pae(vcpu) && *bytes == 4) {
3948
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3949 3950
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3951
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3952 3953
		if (r)
			gentry = 0;
3954 3955 3956
		new = (const u8 *)&gentry;
	}

3957
	switch (*bytes) {
3958 3959 3960 3961 3962 3963 3964 3965 3966
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3967 3968
	}

3969 3970 3971 3972 3973 3974 3975
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
3976
static bool detect_write_flooding(struct kvm_mmu_page *sp)
3977
{
3978 3979 3980 3981
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
3982
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3983
		return false;
3984

3985
	return ++sp->write_flooding_count >= 3;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4002 4003 4004 4005 4006 4007 4008 4009

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4056
	bool remote_flush, local_flush, zap_page;
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4080
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4081

4082
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4083
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4084
		if (detect_write_misaligned(sp, gpa, bytes) ||
4085
		      detect_write_flooding(sp)) {
4086
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4087
						     &invalid_list);
A
Avi Kivity 已提交
4088
			++vcpu->kvm->stat.mmu_flooded;
4089 4090
			continue;
		}
4091 4092 4093 4094 4095

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4096
		local_flush = true;
4097
		while (npte--) {
4098
			entry = *spte;
4099
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4100 4101
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4102
			      & mask.word) && rmap_can_add(vcpu))
4103
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4104
			if (need_remote_flush(entry, *spte))
4105
				remote_flush = true;
4106
			++spte;
4107 4108
		}
	}
4109
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4110
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4111
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4112
	spin_unlock(&vcpu->kvm->mmu_lock);
4113 4114
}

4115 4116
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4117 4118
	gpa_t gpa;
	int r;
4119

4120
	if (vcpu->arch.mmu.direct_map)
4121 4122
		return 0;

4123
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4124 4125

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4126

4127
	return r;
4128
}
4129
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4130

4131
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4132
{
4133
	LIST_HEAD(invalid_list);
4134

4135 4136 4137
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4138 4139 4140
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4141

A
Avi Kivity 已提交
4142
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4143
	}
4144
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4145 4146
}

4147 4148 4149 4150 4151 4152 4153 4154
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4155 4156
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4157
{
4158
	int r, emulation_type = EMULTYPE_RETRY;
4159 4160
	enum emulation_result er;

G
Gleb Natapov 已提交
4161
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4162 4163 4164 4165 4166 4167 4168 4169
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4170 4171 4172 4173
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4174 4175 4176 4177 4178 4179

	switch (er) {
	case EMULATE_DONE:
		return 1;
	case EMULATE_DO_MMIO:
		++vcpu->stat.mmio_exits;
4180
		/* fall through */
4181
	case EMULATE_FAIL:
4182
		return 0;
4183 4184 4185 4186 4187 4188 4189 4190
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4191 4192 4193 4194 4195 4196 4197 4198
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4199 4200 4201 4202 4203 4204
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4205 4206 4207 4208 4209 4210
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4211 4212
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4213
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4214 4215
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4216 4217 4218 4219
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4220
	struct page *page;
A
Avi Kivity 已提交
4221 4222 4223 4224
	int i;

	ASSERT(vcpu);

4225 4226 4227 4228 4229 4230 4231
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4232 4233
		return -ENOMEM;

4234
	vcpu->arch.mmu.pae_root = page_address(page);
4235
	for (i = 0; i < 4; ++i)
4236
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4237

A
Avi Kivity 已提交
4238 4239 4240
	return 0;
}

4241
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4242 4243
{
	ASSERT(vcpu);
4244 4245 4246 4247 4248

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4249

4250 4251
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4252

4253 4254 4255
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
4256
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4257

4258
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4259 4260
}

4261
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4262
{
4263 4264 4265
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4266

4267 4268
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4269

4270 4271
	spin_lock(&kvm->mmu_lock);

4272 4273 4274 4275
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4276

4277 4278
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4279

4280 4281 4282
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4283 4284 4285 4286 4287

			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
				kvm_flush_remote_tlbs(kvm);
				cond_resched_lock(&kvm->mmu_lock);
			}
4288
		}
A
Avi Kivity 已提交
4289
	}
4290

4291
	kvm_flush_remote_tlbs(kvm);
4292
	spin_unlock(&kvm->mmu_lock);
A
Avi Kivity 已提交
4293
}
4294

X
Xiao Guangrong 已提交
4295
#define BATCH_ZAP_PAGES	10
4296 4297 4298
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4299
	int batch = 0;
4300 4301 4302 4303

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4304 4305
		int ret;

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4321 4322 4323 4324
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4325
		if (batch >= BATCH_ZAP_PAGES &&
4326
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4327
			batch = 0;
4328 4329 4330
			goto restart;
		}

4331 4332
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4333 4334 4335
		batch += ret;

		if (ret)
4336 4337 4338
			goto restart;
	}

4339 4340 4341 4342
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4343
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4358
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4359 4360
	kvm->arch.mmu_valid_gen++;

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4372 4373 4374 4375
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4376 4377 4378 4379 4380
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4381 4382 4383 4384 4385 4386 4387 4388 4389
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 *
	 * The max value is MMIO_MAX_GEN - 1 since it is not called
	 * when mark memslot invalid.
	 */
4390 4391
	if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1))) {
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4392
		kvm_mmu_invalidate_zap_all_pages(kvm);
4393
	}
4394 4395
}

4396
static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4397 4398
{
	struct kvm *kvm;
4399
	int nr_to_scan = sc->nr_to_scan;
4400 4401 4402

	if (nr_to_scan == 0)
		goto out;
4403

4404
	raw_spin_lock(&kvm_lock);
4405 4406

	list_for_each_entry(kvm, &vm_list, vm_list) {
4407
		int idx;
4408
		LIST_HEAD(invalid_list);
4409

4410 4411 4412 4413 4414 4415 4416 4417
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4418 4419 4420 4421 4422 4423
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4424 4425
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4426 4427
			continue;

4428
		idx = srcu_read_lock(&kvm->srcu);
4429 4430
		spin_lock(&kvm->mmu_lock);

4431 4432 4433 4434 4435 4436
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4437
		prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4438
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4439

4440
unlock:
4441
		spin_unlock(&kvm->mmu_lock);
4442
		srcu_read_unlock(&kvm->srcu, idx);
4443 4444 4445

		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4446 4447
	}

4448
	raw_spin_unlock(&kvm_lock);
4449

4450 4451
out:
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4452 4453 4454 4455 4456 4457 4458
}

static struct shrinker mmu_shrinker = {
	.shrink = mmu_shrink,
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4459
static void mmu_destroy_caches(void)
4460
{
4461 4462
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4463 4464
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4465 4466 4467 4468
}

int kvm_mmu_module_init(void)
{
4469 4470
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4471
					    0, 0, NULL);
4472
	if (!pte_list_desc_cache)
4473 4474
		goto nomem;

4475 4476
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4477
						  0, 0, NULL);
4478 4479 4480
	if (!mmu_page_header_cache)
		goto nomem;

4481 4482 4483
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4484 4485
	register_shrinker(&mmu_shrinker);

4486 4487 4488
	return 0;

nomem:
4489
	mmu_destroy_caches();
4490 4491 4492
	return -ENOMEM;
}

4493 4494 4495 4496 4497 4498 4499
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4500
	struct kvm_memslots *slots;
4501
	struct kvm_memory_slot *memslot;
4502

4503 4504
	slots = kvm_memslots(kvm);

4505 4506
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4507 4508 4509 4510 4511 4512 4513 4514

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4515 4516 4517
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4518
	u64 spte;
4519 4520
	int nr_sptes = 0;

4521 4522 4523
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4524
		nr_sptes++;
4525
		if (!is_shadow_present_pte(spte))
4526 4527
			break;
	}
4528
	walk_shadow_page_lockless_end(vcpu);
4529 4530 4531 4532 4533

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4534 4535 4536 4537 4538 4539 4540
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

	destroy_kvm_mmu(vcpu);
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4541 4542 4543 4544 4545 4546 4547
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4548 4549
	mmu_audit_disable();
}