Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
慢慢CG
Mace
提交
7523a01b
Mace
项目概览
慢慢CG
/
Mace
与 Fork 源项目一致
Fork自
Xiaomi / Mace
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
7523a01b
编写于
3月 05, 2018
作者:
L
liuqi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Finish caffe model converter and validator.
上级
e6f32c57
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
132 addition
and
43 deletion
+132
-43
python/tools/caffe_converter_lib.py
python/tools/caffe_converter_lib.py
+131
-42
python/tools/converter.py
python/tools/converter.py
+1
-1
未找到文件。
python/tools/caffe_converter_lib.py
浏览文件 @
7523a01b
...
...
@@ -5,12 +5,6 @@ import google.protobuf.text_format
import
numpy
as
np
import
math
# TODO: support NCHW formt, now only support NHWC.
padding_mode
=
{
'VALID'
:
0
,
'SAME'
:
1
,
'FULL'
:
2
}
pooling_type_mode
=
{
'AvgPool'
:
1
,
'MaxPool'
:
2
...
...
@@ -34,7 +28,6 @@ data_type_map = {
activation_name_map
=
{
'ReLU'
:
'RELU'
,
'PReLU'
:
'PRELU'
,
'Sigmoid'
:
'SIGMOID'
,
'TanH'
:
'TANH'
,
}
...
...
@@ -52,6 +45,7 @@ class Operator(object):
self
.
parents
=
[]
self
.
children
=
[]
self
.
data
=
[]
self
.
output_shape
=
[]
def
add_parent
(
self
,
parent_op
):
assert
parent_op
not
in
self
.
parents
...
...
@@ -65,6 +59,12 @@ class Operator(object):
if
self
not
in
child_op
.
parents
:
child_op
.
parents
.
append
(
self
)
def
get_single_parent
(
self
):
if
len
(
self
.
parents
)
!=
1
:
raise
Exception
(
'Operation %s expected single parent, but got %s'
%
(
self
.
name
,
len
(
self
.
parents
)))
return
self
.
parents
[
0
]
def
BlobToNPArray
(
blob
):
if
blob
.
num
!=
0
:
return
(
np
.
asarray
(
blob
.
data
,
dtype
=
np
.
float32
).
...
...
@@ -85,6 +85,32 @@ def CommonConvert(op, mace_type, dt):
op_def
.
input
.
extend
([
parent
.
name
+
':0'
for
parent
in
op
.
parents
])
return
op_def
class
Shapes
(
object
):
@
staticmethod
def
conv_pool_shape
(
input_shape
,
filter_shape
,
paddings
,
strides
,
dilations
,
round_func
):
output_shape
=
np
.
zeros_like
(
input_shape
)
output_shape
[
0
]
=
input_shape
[
0
]
output_shape
[
1
]
=
int
(
round_func
((
input_shape
[
1
]
+
paddings
[
0
]
-
filter_shape
[
0
]
-
(
filter_shape
[
0
]
-
1
)
*
(
dilations
[
0
]
-
1
))
/
float
(
strides
[
0
])))
+
1
output_shape
[
2
]
=
int
(
round_func
((
input_shape
[
2
]
+
paddings
[
1
]
-
filter_shape
[
1
]
-
(
filter_shape
[
1
]
-
1
)
*
(
dilations
[
1
]
-
1
))
/
float
(
strides
[
1
])))
+
1
output_shape
[
3
]
=
filter_shape
[
2
]
return
output_shape
@
staticmethod
def
fully_connected_shape
(
input_shape
,
weight_shape
):
return
[
input_shape
[
0
],
1
,
1
,
weight_shape
[
0
]]
@
staticmethod
def
concat_shape
(
input_shapes
,
axis
):
output_shape
=
None
for
input_shape
in
input_shapes
:
if
output_shape
is
None
:
output_shape
=
list
(
input_shape
)
else
:
output_shape
[
axis
]
+=
input_shape
[
axis
]
return
output_shape
class
CaffeConverter
(
object
):
def
__init__
(
self
,
caffe_net
,
weights
,
net_def
,
dt
,
device
,
winograd
):
self
.
net_def
=
net_def
...
...
@@ -171,7 +197,6 @@ class CaffeConverter(object):
return
sorted_ops
def
add_buffer_to_image
(
self
,
input_name
,
input_type
):
output_name
=
input_name
[:
-
2
]
+
"_b2i"
+
input_name
[
-
2
:]
op_def
=
self
.
net_def
.
op
.
add
()
...
...
@@ -248,39 +273,43 @@ class CaffeConverter(object):
tensor
.
data_type
=
mace_pb2
.
DT_FLOAT
tensor
.
float_data
.
extend
(
value
.
flat
)
@
staticmethod
def
add_output_shape
(
op_def
,
output_shape
):
mace_output_shape
=
mace_pb2
.
OutputShape
()
mace_output_shape
.
dims
.
extend
(
output_shape
)
op_def
.
output_shape
.
extend
([
mace_output_shape
])
def
add_stride_pad_kernel_arg
(
self
,
param
,
op_def
):
try
:
if
len
(
param
.
stride
)
>
1
or
len
(
param
.
kernel_size
)
>
1
or
len
(
param
.
pad
)
>
1
:
raise
Exception
(
'Mace does not support multiple stride/kernel_size/pad'
)
stride
=
param
.
stride
[
0
]
if
len
(
param
.
stride
)
else
1
pad
=
param
.
pad
[
0
]
if
len
(
param
.
pad
)
else
0
kernel
=
param
.
kernel_size
[
0
]
if
len
(
param
.
kernel_size
)
else
0
stride
=
[
param
.
stride
[
0
],
param
.
stride
[
0
]]
if
len
(
param
.
stride
)
else
[
1
,
1
]
pad
=
[
param
.
pad
[
0
]
*
2
,
param
.
pad
[
0
]
*
2
]
if
len
(
param
.
pad
)
else
[
0
,
0
]
kernel
=
[
param
.
kernel_size
[
0
],
param
.
kernel_size
[
0
]]
if
len
(
param
.
kernel_size
)
else
[
0
,
0
]
except
TypeError
:
stride
=
param
.
stride
pad
=
param
.
pad
kernel
=
param
.
kernel_size
stride
=
[
param
.
stride
,
param
.
stride
]
pad
=
[
param
.
pad
*
2
,
param
.
pad
*
2
]
kernel
=
[
param
.
kernel_size
,
param
.
kernel_size
]
strides_arg
=
op_def
.
arg
.
add
()
strides_arg
.
name
=
'strides'
if
param
.
HasField
(
"stride_h"
)
or
param
.
HasField
(
"stride_w"
):
strides_arg
.
ints
.
extend
([
param
.
stride_h
,
param
.
stride_w
])
else
:
strides_arg
.
ints
.
extend
([
stride
,
stride
])
stride
=
[
param
.
stride_h
,
param
.
stride_w
]
strides_arg
.
ints
.
extend
(
stride
)
# Pad
padding_arg
=
op_def
.
arg
.
add
()
padding_arg
.
name
=
'padding_values'
if
param
.
HasField
(
"pad_h"
)
or
param
.
HasField
(
"pad_w"
):
padding_arg
.
ints
.
extend
([
param
.
pad_h
,
param
.
pad_w
])
else
:
padding_arg
.
ints
.
extend
([
pad
,
pad
])
pad
=
[
param
.
pad_h
*
2
,
param
.
pad_w
*
2
]
padding_arg
.
ints
.
extend
(
pad
)
# kernel
if
op_def
.
type
==
'Pooling'
:
kernel_arg
=
op_def
.
arg
.
add
()
kernel_arg
.
name
=
'kernels'
if
param
.
HasField
(
"kernel_h"
)
or
param
.
HasField
(
"kernel_w"
):
kernel
_arg
.
ints
.
extend
([
param
.
kernel_h
,
param
.
kernel_w
])
else
:
kernel_arg
.
ints
.
extend
([
kernel
,
kernel
])
kernel
=
[
param
.
kernel_h
,
param
.
kernel_w
]
kernel_arg
.
ints
.
extend
(
kernel
)
return
pad
,
stride
,
kernel
def
convert_conv2d
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Conv2D'
,
self
.
dt
)
...
...
@@ -309,17 +338,25 @@ class CaffeConverter(object):
else
:
op_def
.
input
.
extend
([
bias_tensor_name
])
self
.
add_stride_pad_kernel_arg
(
param
,
op_def
)
paddings
,
strides
,
_
=
self
.
add_stride_pad_kernel_arg
(
param
,
op_def
)
dilations
=
[
1
,
1
]
if
len
(
param
.
dilation
)
>
0
:
dilation_arg
=
op_def
.
arg
.
add
()
dilation_arg
.
name
=
'dilations'
if
len
(
param
.
dilation
)
==
1
:
dilation
_arg
.
ints
.
extend
([
param
.
dilation
[
0
],
param
.
dilation
[
0
]])
dilation
s
=
[
param
.
dilation
[
0
],
param
.
dilation
[
0
]]
elif
len
(
param
.
dilation
)
==
2
:
dilation_arg
.
ints
.
extend
([
param
.
dilation
[
0
],
param
.
dilation
[
1
]])
dilations
=
[
param
.
dilation
[
0
],
param
.
dilation
[
1
]]
dilation_arg
.
ints
.
extend
(
dilations
)
final_op
=
op
self
.
resolved_ops
.
add
(
op
.
name
)
output_shape
=
Shapes
.
conv_pool_shape
(
op
.
get_single_parent
().
output_shape
,
weight_data
.
shape
,
paddings
,
strides
,
dilations
,
math
.
floor
)
op
.
output_shape
=
output_shape
if
len
(
self
.
ops_map
[
final_op
.
name
].
children
)
==
1
\
and
self
.
ops_map
[
final_op
.
name
].
children
[
0
].
type
in
activation_name_map
:
activation_op
=
self
.
ops_map
[
final_op
.
name
].
children
[
0
]
...
...
@@ -327,14 +364,12 @@ class CaffeConverter(object):
fused_act_arg
=
op_def
.
arg
.
add
()
fused_act_arg
.
name
=
'activation'
fused_act_arg
.
s
=
activation_name_map
[
activation_op
.
type
]
if
activation_op
.
type
==
'PReLU'
:
alpha_arg
=
op_def
.
arg
.
add
()
alpha_arg
.
name
=
'alpha'
alpha_arg
.
f
=
activation_op
.
data
[
0
][
0
]
final_op
=
activation_op
final_op
.
output_shape
=
output_shape
self
.
resolved_ops
.
add
(
activation_op
.
name
)
op_def
.
output
.
extend
([
final_op
.
name
+
':0'
])
self
.
add_output_shape
(
op_def
,
output_shape
)
self
.
net_def
.
op
.
extend
([
op_def
])
def
convert_batchnorm
(
self
,
op
):
...
...
@@ -374,20 +409,20 @@ class CaffeConverter(object):
self
.
resolved_ops
.
add
(
scale_op
.
name
)
final_op
=
scale_op
output_shape
=
op
.
get_single_parent
().
output_shape
if
len
(
self
.
ops_map
[
final_op
.
name
].
children
)
==
1
\
and
self
.
ops_map
[
final_op
.
name
].
children
[
0
].
type
in
activation_name_map
:
activation_op
=
self
.
ops_map
[
final_op
.
name
].
children
[
0
]
fused_act_arg
=
op_def
.
arg
.
add
()
fused_act_arg
.
name
=
'activation'
fused_act_arg
.
s
=
activation_name_map
[
activation_op
.
type
]
if
activation_op
.
type
==
'PReLU'
:
alpha_arg
=
op_def
.
arg
.
add
()
alpha_arg
.
name
=
'alpha'
alpha_arg
.
f
=
activation_op
.
data
[
0
][
0
]
final_op
=
activation_op
final_op
.
output_shape
=
output_shape
self
.
resolved_ops
.
add
(
activation_op
.
name
)
op_def
.
output
.
extend
([
final_op
.
name
+
':0'
])
self
.
add_output_shape
(
op_def
,
output_shape
)
self
.
net_def
.
op
.
extend
([
op_def
])
def
convert_inner_product
(
self
,
op
):
...
...
@@ -405,7 +440,11 @@ class CaffeConverter(object):
raise
ValueError
(
'Unexpected weigth ndim.'
)
if
op
.
data
[
0
].
ndim
==
4
and
list
(
op
.
data
[
0
].
shape
[:
2
]
!=
[
1
,
1
]):
raise
ValueError
(
'Do not support 4D weight with shape [1, 1, *, *]'
)
input_shape
=
op
.
get_single_parent
().
output_shape
weight_data
=
op
.
data
[
0
].
reshape
(
-
1
,
op
.
data
[
0
].
shape
[
-
1
])
assert
weight_data
.
shape
[
1
]
==
(
input_shape
[
1
]
*
input_shape
[
2
]
*
input_shape
[
3
])
weight_data
=
weight_data
.
reshape
(
-
1
,
input_shape
[
3
],
input_shape
[
1
],
input_shape
[
2
])
weight_data
=
weight_data
.
transpose
((
0
,
2
,
3
,
1
)).
reshape
(
weight_data
.
shape
[
0
],
-
1
)
self
.
add_tensor
(
weight_tensor_name
,
weight_data
)
if
self
.
device
==
'gpu'
:
buffer_type
=
"WEIGHT_HEIGHT"
...
...
@@ -425,15 +464,19 @@ class CaffeConverter(object):
else
:
op_def
.
input
.
extend
([
bias_tensor_name
])
output_shape
=
Shapes
.
fully_connected_shape
(
input_shape
,
weight_data
.
shape
)
op
.
output_shape
=
output_shape
self
.
resolved_ops
.
add
(
op
.
name
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
add_output_shape
(
op_def
,
output_shape
)
self
.
net_def
.
op
.
extend
([
op_def
])
def
convert_pooling
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Pooling'
,
self
.
dt
)
param
=
op
.
layer
.
pooling_param
self
.
add_stride_pad_kernel_arg
(
param
,
op_def
)
paddings
,
strides
,
kernels
=
self
.
add_stride_pad_kernel_arg
(
param
,
op_def
)
if
param
.
pool
==
caffe_pb2
.
PoolingParameter
.
MAX
:
pooling_type
=
"MaxPool"
elif
param
.
pool
==
caffe_pb2
.
PoolingParameter
.
AVE
:
...
...
@@ -442,7 +485,14 @@ class CaffeConverter(object):
pooling_type_arg
.
name
=
'pooling_type'
pooling_type_arg
.
i
=
pooling_type_mode
[
pooling_type
]
input_shape
=
op
.
get_single_parent
().
output_shape
filter_shape
=
[
kernels
[
0
],
kernels
[
1
],
input_shape
[
3
],
input_shape
[
3
]]
output_shape
=
Shapes
.
conv_pool_shape
(
input_shape
,
filter_shape
,
paddings
,
strides
,
[
1
,
1
],
math
.
ceil
)
op
.
output_shape
=
output_shape
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
add_output_shape
(
op_def
,
output_shape
)
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
...
...
@@ -452,6 +502,9 @@ class CaffeConverter(object):
activation_arg
.
name
=
'activation'
activation_arg
.
s
=
activation_name_map
[
op
.
type
]
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
output_shape
=
op
.
get_single_parent
().
output_shape
op
.
output_shape
=
output_shape
self
.
add_output_shape
(
op_def
,
output_shape
)
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
...
...
@@ -459,17 +512,28 @@ class CaffeConverter(object):
op_def
=
CommonConvert
(
op
,
'Activation'
,
self
.
dt
)
activation_arg
=
op_def
.
arg
.
add
()
activation_arg
.
name
=
'activation'
activation_arg
.
s
=
activation_name_map
[
op
.
type
]
max_limit_arg
=
op_def
.
arg
.
add
()
max_limit_arg
.
name
=
'alpha'
max_limit_arg
.
f
=
op
.
data
[
0
][
0
]
activation_arg
.
s
=
'PRELU'
alpha_tensor_name
=
op
.
name
+
'_alpha:0'
alpha_data
=
op
.
data
[
0
]
self
.
add_tensor
(
alpha_tensor_name
,
alpha_data
)
if
self
.
device
==
'gpu'
:
output_name
=
self
.
add_buffer_to_image
(
alpha_tensor_name
,
"ARGUMENT"
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
alpha_tensor_name
])
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
output_shape
=
op
.
get_single_parent
().
output_shape
op
.
output_shape
=
output_shape
self
.
add_output_shape
(
op_def
,
output_shape
)
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_add
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'AddN'
,
self
.
dt
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
output_shape
=
op
.
parents
[
0
].
output_shape
op
.
output_shape
=
output_shape
self
.
add_output_shape
(
op_def
,
output_shape
)
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
...
...
@@ -486,6 +550,12 @@ class CaffeConverter(object):
except
AttributeError
:
pass
input_shapes
=
[]
for
parent
in
op
.
parents
:
input_shapes
.
append
(
parent
.
output_shape
)
output_shape
=
Shapes
.
concat_shape
(
input_shapes
,
axis_arg
.
i
)
op
.
output_shape
=
output_shape
self
.
add_output_shape
(
op_def
,
output_shape
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
...
...
@@ -501,12 +571,18 @@ class CaffeConverter(object):
coeff_arg
.
name
=
'coeff'
coeff_arg
.
ints
.
extend
(
list
(
param
.
coeff
))
output_shape
=
op
.
parents
[
0
].
output_shape
op
.
output_shape
=
output_shape
self
.
add_output_shape
(
op_def
,
output_shape
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_normal_op
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
op
.
type
,
self
.
dt
)
output_shape
=
op
.
parents
[
0
].
output_shape
op
.
output_shape
=
output_shape
self
.
add_output_shape
(
op_def
,
output_shape
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
...
...
@@ -520,11 +596,24 @@ class CaffeConverter(object):
if
len
(
op
.
output
)
>
0
and
op
.
output
[
0
]
==
output_name
:
op
.
output
[
0
]
=
MACE_OUTPUT_NODE_NAME
+
":0"
def
convert
(
self
,
input_node
,
output_node
):
def
add_input_op_shape
(
self
,
input_node
,
input_shape
):
if
not
input_shape
:
input_shape
=
[]
if
self
.
caffe_net
.
input_dim
:
input_shape
=
self
.
caffe_net
.
input_dim
elif
self
.
caffe_net
.
input_shape
:
input_shape
=
self
.
caffe_net
.
input_shape
[
0
].
dim
elif
self
.
caffe_net
.
layer
[
0
].
input_param
.
shape
:
input_shape
=
self
.
caffe_net
.
layer
[
0
].
input_param
.
shape
[
0
].
dim
input_op
=
self
.
ops_map
[
input_node
]
input_op
.
output_shape
=
input_shape
def
convert
(
self
,
input_node
,
input_shape
,
output_node
):
if
self
.
device
==
'gpu'
:
self
.
add_input_transform
(
input_node
)
assert
self
.
ops
[
0
].
type
==
'Input'
self
.
add_input_op_shape
(
input_node
,
input_shape
)
for
op
in
self
.
ops
:
if
op
.
name
in
self
.
resolved_ops
:
...
...
@@ -565,7 +654,7 @@ class CaffeConverter(object):
print
'Unresolve Op: %s with type %s'
%
(
op
.
name
,
op
.
type
)
def
convert_to_mace_pb
(
model_file
,
weight_file
,
input_node
,
output_node
,
data_type
,
device
,
winograd
):
def
convert_to_mace_pb
(
model_file
,
weight_file
,
input_node
,
input_shape
,
output_node
,
data_type
,
device
,
winograd
):
net_def
=
mace_pb2
.
NetDef
()
dt
=
data_type_map
[
data_type
]
...
...
@@ -578,7 +667,7 @@ def convert_to_mace_pb(model_file, weight_file, input_node, output_node, data_ty
weights
.
MergeFromString
(
f
.
read
())
converter
=
CaffeConverter
(
caffe_net
,
weights
,
net_def
,
dt
,
device
,
winograd
)
converter
.
convert
(
input_node
,
output_node
)
converter
.
convert
(
input_node
,
input_shape
,
output_node
)
print
"PB Converted."
if
device
==
'gpu'
:
print
"start optimize memory."
...
...
python/tools/converter.py
浏览文件 @
7523a01b
...
...
@@ -38,7 +38,7 @@ def main(unused_args):
elif
FLAGS
.
platform
==
'caffe'
:
from
lib.python.tools
import
caffe_converter_lib
output_graph_def
=
caffe_converter_lib
.
convert_to_mace_pb
(
FLAGS
.
model_file
,
FLAGS
.
weight_file
,
FLAGS
.
input_node
,
FLAGS
.
output_node
,
FLAGS
.
model_file
,
FLAGS
.
weight_file
,
FLAGS
.
input_node
,
input_shape
,
FLAGS
.
output_node
,
FLAGS
.
data_type
,
FLAGS
.
runtime
,
FLAGS
.
winograd
)
if
FLAGS
.
output_type
==
'source'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录