Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
慢慢CG
Mace
提交
e6f32c57
Mace
项目概览
慢慢CG
/
Mace
与 Fork 源项目一致
Fork自
Xiaomi / Mace
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
e6f32c57
编写于
3月 02, 2018
作者:
L
liuqi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support caffe model.
上级
0e4a49a8
变更
8
展开全部
隐藏空白更改
内联
并排
Showing
8 changed file
with
2214 addition
and
12 deletion
+2214
-12
proto/BUILD
proto/BUILD
+9
-0
proto/caffe.proto
proto/caffe.proto
+1426
-0
python/tools/BUILD
python/tools/BUILD
+15
-2
python/tools/caffe_converter_lib.py
python/tools/caffe_converter_lib.py
+589
-0
python/tools/converter.py
python/tools/converter.py
+156
-0
python/tools/source_converter_lib.py
python/tools/source_converter_lib.py
+4
-7
python/tools/tf_converter_lib.py
python/tools/tf_converter_lib.py
+8
-2
python/tools/tf_dsp_converter_lib.py
python/tools/tf_dsp_converter_lib.py
+7
-1
未找到文件。
proto/BUILD
浏览文件 @
e6f32c57
...
...
@@ -18,3 +18,12 @@ py_proto_library(
srcs_version
=
"PY2AND3"
,
deps
=
[
"@com_google_protobuf//:protobuf_python"
],
)
py_proto_library
(
name
=
"caffe_py"
,
srcs
=
[
"caffe.proto"
],
default_runtime
=
"@com_google_protobuf//:protobuf_python"
,
protoc
=
"@com_google_protobuf//:protoc"
,
srcs_version
=
"PY2AND3"
,
deps
=
[
"@com_google_protobuf//:protobuf_python"
],
)
proto/caffe.proto
0 → 100644
浏览文件 @
e6f32c57
此差异已折叠。
点击以展开。
python/tools/BUILD
浏览文件 @
e6f32c57
...
...
@@ -13,6 +13,18 @@ py_library(
],
)
py_library
(
name
=
"caffe_converter_lib"
,
srcs
=
[
"caffe_converter_lib.py"
,
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":memory_optimizer"
,
"//lib/proto:caffe_py"
,
],
)
py_library
(
name
=
"source_converter_lib"
,
srcs
=
[
...
...
@@ -25,11 +37,12 @@ py_library(
)
py_binary
(
name
=
"
tf_
converter"
,
srcs
=
[
"
tf_
converter.py"
],
name
=
"converter"
,
srcs
=
[
"converter.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":tf_converter_lib"
,
":caffe_converter_lib"
,
":source_converter_lib"
,
"@six_archive//:six"
,
],
...
...
python/tools/caffe_converter_lib.py
0 → 100644
浏览文件 @
e6f32c57
from
lib.proto
import
mace_pb2
from
lib.proto
import
caffe_pb2
from
lib.python.tools
import
memory_optimizer
import
google.protobuf.text_format
import
numpy
as
np
import
math
# TODO: support NCHW formt, now only support NHWC.
padding_mode
=
{
'VALID'
:
0
,
'SAME'
:
1
,
'FULL'
:
2
}
pooling_type_mode
=
{
'AvgPool'
:
1
,
'MaxPool'
:
2
}
buffer_type_map
=
{
'CONV2D_FILTER'
:
0
,
'IN_OUT_CHANNEL'
:
1
,
'ARGUMENT'
:
2
,
'IN_OUT_HEIGHT'
:
3
,
'IN_OUT_WIDTH'
:
4
,
'WINOGRAD_FILTER'
:
5
,
'DW_CONV2D_FILTER'
:
6
,
'WEIGHT_HEIGHT'
:
7
,
}
data_type_map
=
{
'DT_HALF'
:
mace_pb2
.
DT_HALF
,
'DT_FLOAT'
:
mace_pb2
.
DT_FLOAT
}
activation_name_map
=
{
'ReLU'
:
'RELU'
,
'PReLU'
:
'PRELU'
,
'Sigmoid'
:
'SIGMOID'
,
'TanH'
:
'TANH'
,
}
MACE_INPUT_NODE_NAME
=
"mace_input_node"
MACE_OUTPUT_NODE_NAME
=
"mace_output_node"
OPENCL_IMAGE_MAX_SIZE
=
16384
class
Operator
(
object
):
def
__init__
(
self
,
name
,
type
,
layer
):
self
.
name
=
name
self
.
type
=
type
self
.
layer
=
layer
self
.
parents
=
[]
self
.
children
=
[]
self
.
data
=
[]
def
add_parent
(
self
,
parent_op
):
assert
parent_op
not
in
self
.
parents
self
.
parents
.
append
(
parent_op
)
if
self
not
in
parent_op
.
children
:
parent_op
.
children
.
append
(
self
)
def
add_child
(
self
,
child_op
):
assert
child_op
not
in
self
.
children
self
.
children
.
append
(
child_op
)
if
self
not
in
child_op
.
parents
:
child_op
.
parents
.
append
(
self
)
def
BlobToNPArray
(
blob
):
if
blob
.
num
!=
0
:
return
(
np
.
asarray
(
blob
.
data
,
dtype
=
np
.
float32
).
reshape
(
blob
.
num
,
blob
.
channels
,
blob
.
height
,
blob
.
width
))
else
:
return
np
.
asarray
(
blob
.
data
,
dtype
=
np
.
float32
).
reshape
(
blob
.
shape
.
dim
)
def
CommonConvert
(
op
,
mace_type
,
dt
):
op_def
=
mace_pb2
.
OperatorDef
()
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'T'
arg
.
i
=
dt
data_format_arg
=
op_def
.
arg
.
add
()
data_format_arg
.
name
=
'data_format'
data_format_arg
.
s
=
'NHWC'
op_def
.
name
=
op
.
name
op_def
.
type
=
mace_type
op_def
.
input
.
extend
([
parent
.
name
+
':0'
for
parent
in
op
.
parents
])
return
op_def
class
CaffeConverter
(
object
):
def
__init__
(
self
,
caffe_net
,
weights
,
net_def
,
dt
,
device
,
winograd
):
self
.
net_def
=
net_def
self
.
caffe_net
=
caffe_net
self
.
weights
=
weights
self
.
dt
=
dt
self
.
device
=
device
self
.
winograd
=
winograd
self
.
resolved_ops
=
set
()
layers
=
caffe_net
.
layer
# remove train layers and dropout
layers
=
self
.
remove_unused_layers
(
layers
)
# Construct graph
# Only support single-output layer
# layer with single output often use the same top name.
self
.
ops
=
[
Operator
(
layer
.
name
,
layer
.
type
,
layer
)
for
layer
in
layers
]
self
.
ops_map
=
{
op
.
name
:
op
for
op
in
self
.
ops
}
output_op
=
{}
for
layer
in
layers
:
op
=
self
.
ops_map
[
layer
.
name
]
for
input_name
in
layer
.
bottom
:
assert
input_name
!=
layer
.
name
parent_op
=
output_op
.
get
(
input_name
)
if
parent_op
is
None
:
parent_op
=
self
.
ops_map
[
input_name
]
op
.
add_parent
(
parent_op
)
if
len
(
layer
.
top
)
>
1
:
raise
Exception
(
'Only support single-output layers'
)
for
output_name
in
layer
.
top
:
if
output_name
==
layer
.
name
:
continue
output_op
[
output_name
]
=
op
# Load weights
weights_layers
=
weights
.
layer
for
layer
in
weights_layers
:
if
not
layer
.
blobs
:
continue
if
layer
.
name
in
self
.
ops_map
:
op
=
self
.
ops_map
[
layer
.
name
]
op
.
data
=
[
BlobToNPArray
(
blob
)
for
blob
in
layer
.
blobs
]
# toposort ops
self
.
ops
=
self
.
toposort_ops
()
def
remove_unused_layers
(
self
,
layers
):
phase_map
=
{
0
:
'train'
,
1
:
'test'
}
test_layers_names
=
set
()
test_layers
=
[]
for
layer
in
layers
:
phase
=
'test'
if
len
(
layer
.
include
):
phase
=
phase_map
[
layer
.
include
[
0
].
phase
]
if
len
(
layer
.
exclude
):
phase
=
phase_map
[
layer
.
exclude
[
0
].
phase
]
if
phase
==
'test'
and
layer
.
type
!=
'Dropout'
:
test_layers
.
append
(
layer
)
assert
layer
.
name
not
in
test_layers_names
test_layers_names
.
add
(
layer
.
name
)
return
test_layers
def
toposort_ops
(
self
):
sorted_ops
=
[]
temp_visited
=
set
()
visited
=
set
()
def
search
(
op
):
if
op
.
name
in
temp_visited
:
raise
Exception
(
"The model is not DAG"
)
if
op
.
name
in
visited
:
return
temp_visited
.
add
(
op
.
name
)
for
parent_op
in
op
.
parents
:
search
(
parent_op
)
temp_visited
.
remove
(
op
.
name
)
sorted_ops
.
append
(
op
)
visited
.
add
(
op
.
name
)
for
op
in
self
.
ops
:
search
(
op
)
return
sorted_ops
def
add_buffer_to_image
(
self
,
input_name
,
input_type
):
output_name
=
input_name
[:
-
2
]
+
"_b2i"
+
input_name
[
-
2
:]
op_def
=
self
.
net_def
.
op
.
add
()
op_def
.
name
=
output_name
[:
-
2
]
op_def
.
type
=
'BufferToImage'
op_def
.
input
.
extend
([
input_name
])
op_def
.
output
.
extend
([
output_name
])
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'buffer_type'
arg
.
i
=
buffer_type_map
[
input_type
]
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'mode'
arg
.
i
=
0
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'T'
arg
.
i
=
self
.
dt
return
output_name
def
add_image_to_buffer
(
self
,
input_name
,
input_type
):
output_name
=
input_name
[:
-
2
]
+
"_i2b"
+
input_name
[
-
2
:]
op_def
=
self
.
net_def
.
op
.
add
()
op_def
.
name
=
output_name
[:
-
2
]
op_def
.
type
=
'ImageToBuffer'
op_def
.
input
.
extend
([
input_name
])
op_def
.
output
.
extend
([
output_name
])
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'buffer_type'
arg
.
i
=
buffer_type_map
[
input_type
]
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'T'
arg
.
i
=
self
.
dt
return
output_name
def
add_input_transform
(
self
,
name
):
new_input_name
=
MACE_INPUT_NODE_NAME
+
":0"
op_def
=
self
.
net_def
.
op
.
add
()
op_def
.
name
=
name
op_def
.
type
=
'BufferToImage'
op_def
.
input
.
extend
([
new_input_name
])
if
name
not
in
self
.
ops_map
:
raise
Exception
(
"Input name not in the model"
)
top_name
=
self
.
ops_map
[
name
].
layer
.
top
[
0
]
op_def
.
output
.
extend
([
top_name
+
':0'
])
epsilon_arg
=
op_def
.
arg
.
add
()
epsilon_arg
.
name
=
'buffer_type'
epsilon_arg
.
i
=
buffer_type_map
[
'IN_OUT_CHANNEL'
]
arg
=
op_def
.
arg
.
add
()
arg
.
name
=
'T'
arg
.
i
=
self
.
dt
def
add_output_transform
(
self
,
name
):
output_name
=
MACE_OUTPUT_NODE_NAME
+
":0"
op_def
=
self
.
net_def
.
op
.
add
()
op_def
.
name
=
output_name
[:
-
2
]
op_def
.
type
=
'ImageToBuffer'
op_def
.
input
.
extend
([
name
+
':0'
])
op_def
.
output
.
extend
([
output_name
])
epsilon_arg
=
op_def
.
arg
.
add
()
epsilon_arg
.
name
=
'buffer_type'
epsilon_arg
.
i
=
buffer_type_map
[
'IN_OUT_CHANNEL'
]
def
add_tensor
(
self
,
name
,
value
):
tensor
=
self
.
net_def
.
tensors
.
add
()
tensor
.
name
=
name
shape
=
list
(
value
.
shape
)
tensor
.
dims
.
extend
(
shape
)
tensor
.
data_type
=
mace_pb2
.
DT_FLOAT
tensor
.
float_data
.
extend
(
value
.
flat
)
def
add_stride_pad_kernel_arg
(
self
,
param
,
op_def
):
try
:
if
len
(
param
.
stride
)
>
1
or
len
(
param
.
kernel_size
)
>
1
or
len
(
param
.
pad
)
>
1
:
raise
Exception
(
'Mace does not support multiple stride/kernel_size/pad'
)
stride
=
param
.
stride
[
0
]
if
len
(
param
.
stride
)
else
1
pad
=
param
.
pad
[
0
]
if
len
(
param
.
pad
)
else
0
kernel
=
param
.
kernel_size
[
0
]
if
len
(
param
.
kernel_size
)
else
0
except
TypeError
:
stride
=
param
.
stride
pad
=
param
.
pad
kernel
=
param
.
kernel_size
strides_arg
=
op_def
.
arg
.
add
()
strides_arg
.
name
=
'strides'
if
param
.
HasField
(
"stride_h"
)
or
param
.
HasField
(
"stride_w"
):
strides_arg
.
ints
.
extend
([
param
.
stride_h
,
param
.
stride_w
])
else
:
strides_arg
.
ints
.
extend
([
stride
,
stride
])
# Pad
padding_arg
=
op_def
.
arg
.
add
()
padding_arg
.
name
=
'padding_values'
if
param
.
HasField
(
"pad_h"
)
or
param
.
HasField
(
"pad_w"
):
padding_arg
.
ints
.
extend
([
param
.
pad_h
,
param
.
pad_w
])
else
:
padding_arg
.
ints
.
extend
([
pad
,
pad
])
# kernel
if
op_def
.
type
==
'Pooling'
:
kernel_arg
=
op_def
.
arg
.
add
()
kernel_arg
.
name
=
'kernels'
if
param
.
HasField
(
"kernel_h"
)
or
param
.
HasField
(
"kernel_w"
):
kernel_arg
.
ints
.
extend
([
param
.
kernel_h
,
param
.
kernel_w
])
else
:
kernel_arg
.
ints
.
extend
([
kernel
,
kernel
])
def
convert_conv2d
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Conv2D'
,
self
.
dt
)
param
=
op
.
layer
.
convolution_param
# Add filter
weight_tensor_name
=
op
.
name
+
'_weight:0'
weight_data
=
op
.
data
[
0
].
transpose
((
2
,
3
,
0
,
1
))
self
.
add_tensor
(
weight_tensor_name
,
weight_data
)
if
self
.
device
==
'gpu'
:
buffer_type
=
"CONV2D_FILTER"
output_name
=
self
.
add_buffer_to_image
(
weight_tensor_name
,
buffer_type
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
weight_tensor_name
])
# Add Bias
if
len
(
op
.
data
)
==
2
:
bias_tensor_name
=
op
.
name
+
'_bias:0'
bias_data
=
op
.
data
[
1
]
self
.
add_tensor
(
bias_tensor_name
,
bias_data
)
if
self
.
device
==
'gpu'
:
output_name
=
self
.
add_buffer_to_image
(
bias_tensor_name
,
"ARGUMENT"
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
bias_tensor_name
])
self
.
add_stride_pad_kernel_arg
(
param
,
op_def
)
if
len
(
param
.
dilation
)
>
0
:
dilation_arg
=
op_def
.
arg
.
add
()
dilation_arg
.
name
=
'dilations'
if
len
(
param
.
dilation
)
==
1
:
dilation_arg
.
ints
.
extend
([
param
.
dilation
[
0
],
param
.
dilation
[
0
]])
elif
len
(
param
.
dilation
)
==
2
:
dilation_arg
.
ints
.
extend
([
param
.
dilation
[
0
],
param
.
dilation
[
1
]])
final_op
=
op
self
.
resolved_ops
.
add
(
op
.
name
)
if
len
(
self
.
ops_map
[
final_op
.
name
].
children
)
==
1
\
and
self
.
ops_map
[
final_op
.
name
].
children
[
0
].
type
in
activation_name_map
:
activation_op
=
self
.
ops_map
[
final_op
.
name
].
children
[
0
]
op_def
.
type
=
"FusedConv2D"
fused_act_arg
=
op_def
.
arg
.
add
()
fused_act_arg
.
name
=
'activation'
fused_act_arg
.
s
=
activation_name_map
[
activation_op
.
type
]
if
activation_op
.
type
==
'PReLU'
:
alpha_arg
=
op_def
.
arg
.
add
()
alpha_arg
.
name
=
'alpha'
alpha_arg
.
f
=
activation_op
.
data
[
0
][
0
]
final_op
=
activation_op
self
.
resolved_ops
.
add
(
activation_op
.
name
)
op_def
.
output
.
extend
([
final_op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
def
convert_batchnorm
(
self
,
op
):
if
len
(
op
.
children
)
!=
1
or
op
.
children
[
0
].
type
!=
'Scale'
:
raise
Exception
(
'Now only support BatchNorm+Scale'
)
op_def
=
CommonConvert
(
op
,
'FoldedBatchNorm'
,
self
.
dt
)
scale_op
=
op
.
children
[
0
]
epsilon_value
=
op
.
layer
.
batch_norm_param
.
eps
if
op
.
data
[
2
][
0
]
!=
0
:
mean_value
=
(
1.
/
op
.
data
[
2
][
0
])
*
op
.
data
[
0
]
var_value
=
(
1.
/
op
.
data
[
2
][
0
])
*
op
.
data
[
1
]
else
:
raise
RuntimeError
(
'scalar is zero.'
)
gamma_value
=
scale_op
.
data
[
0
]
beta_value
=
np
.
zeros_like
(
mean_value
)
if
len
(
scale_op
.
data
)
==
2
:
beta_value
=
scale_op
.
data
[
1
]
scale_value
=
(
(
1.0
/
np
.
vectorize
(
math
.
sqrt
)(
var_value
+
epsilon_value
))
*
gamma_value
)
offset_value
=
(
-
mean_value
*
scale_value
)
+
beta_value
input_names
=
[
op
.
name
+
'_scale:0'
,
op
.
name
+
'_offset:0'
]
self
.
add_tensor
(
input_names
[
0
],
scale_value
)
self
.
add_tensor
(
input_names
[
1
],
offset_value
)
if
self
.
device
==
'gpu'
:
for
name
in
input_names
:
output_name
=
self
.
add_buffer_to_image
(
name
,
"ARGUMENT"
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
name
for
name
in
input_names
])
self
.
resolved_ops
.
add
(
op
.
name
)
self
.
resolved_ops
.
add
(
scale_op
.
name
)
final_op
=
scale_op
if
len
(
self
.
ops_map
[
final_op
.
name
].
children
)
==
1
\
and
self
.
ops_map
[
final_op
.
name
].
children
[
0
].
type
in
activation_name_map
:
activation_op
=
self
.
ops_map
[
final_op
.
name
].
children
[
0
]
fused_act_arg
=
op_def
.
arg
.
add
()
fused_act_arg
.
name
=
'activation'
fused_act_arg
.
s
=
activation_name_map
[
activation_op
.
type
]
if
activation_op
.
type
==
'PReLU'
:
alpha_arg
=
op_def
.
arg
.
add
()
alpha_arg
.
name
=
'alpha'
alpha_arg
.
f
=
activation_op
.
data
[
0
][
0
]
final_op
=
activation_op
self
.
resolved_ops
.
add
(
activation_op
.
name
)
op_def
.
output
.
extend
([
final_op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
def
convert_inner_product
(
self
,
op
):
param
=
op
.
layer
.
inner_product_param
try
:
if
param
.
axis
!=
1
or
param
.
transpose
:
raise
ValueError
(
'Do not support non-default axis and transpose '
'case for innner product'
)
except
AttributeError
:
pass
op_def
=
CommonConvert
(
op
,
'FC'
,
self
.
dt
)
weight_tensor_name
=
op
.
name
+
'_weight:0'
if
op
.
data
[
0
].
ndim
not
in
[
2
,
4
]:
raise
ValueError
(
'Unexpected weigth ndim.'
)
if
op
.
data
[
0
].
ndim
==
4
and
list
(
op
.
data
[
0
].
shape
[:
2
]
!=
[
1
,
1
]):
raise
ValueError
(
'Do not support 4D weight with shape [1, 1, *, *]'
)
weight_data
=
op
.
data
[
0
].
reshape
(
-
1
,
op
.
data
[
0
].
shape
[
-
1
])
self
.
add_tensor
(
weight_tensor_name
,
weight_data
)
if
self
.
device
==
'gpu'
:
buffer_type
=
"WEIGHT_HEIGHT"
output_name
=
self
.
add_buffer_to_image
(
weight_tensor_name
,
buffer_type
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
weight_tensor_name
])
# Add Bias
if
len
(
op
.
data
)
==
2
:
bias_tensor_name
=
op
.
name
+
'_bias:0'
bias_data
=
op
.
data
[
1
]
self
.
add_tensor
(
bias_tensor_name
,
bias_data
)
if
self
.
device
==
'gpu'
:
output_name
=
self
.
add_buffer_to_image
(
bias_tensor_name
,
"ARGUMENT"
)
op_def
.
input
.
extend
([
output_name
])
else
:
op_def
.
input
.
extend
([
bias_tensor_name
])
self
.
resolved_ops
.
add
(
op
.
name
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
def
convert_pooling
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Pooling'
,
self
.
dt
)
param
=
op
.
layer
.
pooling_param
self
.
add_stride_pad_kernel_arg
(
param
,
op_def
)
if
param
.
pool
==
caffe_pb2
.
PoolingParameter
.
MAX
:
pooling_type
=
"MaxPool"
elif
param
.
pool
==
caffe_pb2
.
PoolingParameter
.
AVE
:
pooling_type
=
"AvgPool"
pooling_type_arg
=
op_def
.
arg
.
add
()
pooling_type_arg
.
name
=
'pooling_type'
pooling_type_arg
.
i
=
pooling_type_mode
[
pooling_type
]
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_activation
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Activation'
,
self
.
dt
)
activation_arg
=
op_def
.
arg
.
add
()
activation_arg
.
name
=
'activation'
activation_arg
.
s
=
activation_name_map
[
op
.
type
]
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_prelu
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Activation'
,
self
.
dt
)
activation_arg
=
op_def
.
arg
.
add
()
activation_arg
.
name
=
'activation'
activation_arg
.
s
=
activation_name_map
[
op
.
type
]
max_limit_arg
=
op_def
.
arg
.
add
()
max_limit_arg
.
name
=
'alpha'
max_limit_arg
.
f
=
op
.
data
[
0
][
0
]
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_add
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'AddN'
,
self
.
dt
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_concat
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Concat'
,
self
.
dt
)
axis_arg
=
op_def
.
arg
.
add
()
axis_arg
.
name
=
'axis'
axis_arg
.
i
=
3
try
:
if
op
.
layer
.
concat_param
.
HasFeild
(
'axis'
):
axis_arg
.
i
=
op
.
concat_param
.
axis
elif
op
.
layer
.
concat_param
.
HasFeild
(
'concat_dim'
):
axis_arg
.
i
=
op
.
concat_param
.
concat_dim
except
AttributeError
:
pass
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_eltwise
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
'Eltwise'
,
self
.
dt
)
param
=
op
.
layer
.
eltwise_param
type_arg
=
op_def
.
arg
.
add
()
type_arg
.
name
=
'type'
type_arg
.
i
=
param
.
operation
if
len
(
param
.
coeff
)
>
0
:
coeff_arg
=
op_def
.
arg
.
add
()
coeff_arg
.
name
=
'coeff'
coeff_arg
.
ints
.
extend
(
list
(
param
.
coeff
))
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
convert_normal_op
(
self
,
op
):
op_def
=
CommonConvert
(
op
,
op
.
type
,
self
.
dt
)
op_def
.
output
.
extend
([
op
.
name
+
':0'
])
self
.
net_def
.
op
.
extend
([
op_def
])
self
.
resolved_ops
.
add
(
op
.
name
)
def
replace_in_out_name
(
self
,
input_name
,
output_name
):
input_name
=
input_name
+
":0"
output_name
=
output_name
+
":0"
for
op
in
self
.
net_def
.
op
:
if
len
(
op
.
input
)
>
0
and
op
.
input
[
0
]
==
input_name
:
op
.
input
[
0
]
=
MACE_INPUT_NODE_NAME
+
":0"
if
len
(
op
.
output
)
>
0
and
op
.
output
[
0
]
==
output_name
:
op
.
output
[
0
]
=
MACE_OUTPUT_NODE_NAME
+
":0"
def
convert
(
self
,
input_node
,
output_node
):
if
self
.
device
==
'gpu'
:
self
.
add_input_transform
(
input_node
)
assert
self
.
ops
[
0
].
type
==
'Input'
for
op
in
self
.
ops
:
if
op
.
name
in
self
.
resolved_ops
:
continue
if
op
.
type
==
'Input'
:
self
.
resolved_ops
.
add
(
op
.
name
)
elif
op
.
type
==
'Convolution'
:
self
.
convert_conv2d
(
op
)
elif
op
.
type
==
'BatchNorm'
:
self
.
convert_batchnorm
(
op
)
elif
op
.
type
==
'InnerProduct'
:
self
.
convert_inner_product
(
op
)
elif
op
.
type
==
'Pooling'
:
self
.
convert_pooling
(
op
)
elif
op
.
type
==
'PReLU'
:
self
.
convert_prelu
(
op
)
elif
op
.
type
in
[
'ReLU'
,
'Sigmoid'
,
'TanH'
]:
self
.
convert_activation
(
op
)
elif
op
.
type
==
'Add'
:
self
.
convert_add
(
op
)
elif
op
.
type
==
'Concat'
:
self
.
convert_concat
(
op
)
elif
op
.
type
==
'Eltwise'
:
self
.
convert_eltwise
(
op
)
elif
op
.
type
in
[
'Softmax'
]:
self
.
convert_normal_op
(
op
)
else
:
raise
Exception
(
'Unknown Op: %s, type: %s'
%
(
op
.
name
,
op
.
type
))
if
self
.
device
==
'gpu'
:
self
.
add_output_transform
(
output_node
)
if
self
.
device
==
'cpu'
:
self
.
replace_in_out_name
(
input_node
,
output_node
)
for
op
in
self
.
ops
:
if
op
.
name
not
in
self
.
resolved_ops
:
print
'Unresolve Op: %s with type %s'
%
(
op
.
name
,
op
.
type
)
def
convert_to_mace_pb
(
model_file
,
weight_file
,
input_node
,
output_node
,
data_type
,
device
,
winograd
):
net_def
=
mace_pb2
.
NetDef
()
dt
=
data_type_map
[
data_type
]
caffe_net
=
caffe_pb2
.
NetParameter
()
with
open
(
model_file
,
"r"
)
as
f
:
google
.
protobuf
.
text_format
.
Merge
(
str
(
f
.
read
()),
caffe_net
)
weights
=
caffe_pb2
.
NetParameter
()
with
open
(
weight_file
,
"rb"
)
as
f
:
weights
.
MergeFromString
(
f
.
read
())
converter
=
CaffeConverter
(
caffe_net
,
weights
,
net_def
,
dt
,
device
,
winograd
)
converter
.
convert
(
input_node
,
output_node
)
print
"PB Converted."
if
device
==
'gpu'
:
print
"start optimize memory."
mem_optimizer
=
memory_optimizer
.
MemoryOptimizer
(
net_def
)
mem_optimizer
.
optimize
()
print
"Memory optimization done."
return
net_def
python/tools/converter.py
0 → 100644
浏览文件 @
e6f32c57
import
argparse
import
sys
import
hashlib
import
os.path
from
lib.python.tools
import
source_converter_lib
# ./bazel-bin/mace/python/tools/tf_converter --model_file quantized_test.pb --output quantized_test_dsp.pb --runtime dsp --input_dim input_node,1,28,28,3
FLAGS
=
None
def
md5
(
fname
):
hash_md5
=
hashlib
.
md5
()
with
open
(
fname
,
"rb"
)
as
f
:
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
hash_md5
.
update
(
chunk
)
return
hash_md5
.
hexdigest
()
def
main
(
unused_args
):
if
not
os
.
path
.
isfile
(
FLAGS
.
model_file
):
print
(
"Input graph file '"
+
FLAGS
.
model_file
+
"' does not exist!"
)
return
-
1
mode_pb_checksum
=
md5
(
FLAGS
.
model_file
)
if
FLAGS
.
runtime
==
'dsp'
:
from
lib.python.tools
import
tf_dsp_converter_lib
output_graph_def
=
tf_dsp_converter_lib
.
convert_to_mace_pb
(
FLAGS
.
model_file
,
FLAGS
.
input_node
,
FLAGS
.
output_node
,
FLAGS
.
dsp_mode
)
else
:
input_shape
=
[]
if
FLAGS
.
input_shape
!=
""
:
input_shape
.
extend
([
int
(
x
)
for
x
in
FLAGS
.
input_shape
.
split
(
','
)])
if
FLAGS
.
platform
==
'tensorflow'
:
from
lib.python.tools
import
tf_converter_lib
output_graph_def
=
tf_converter_lib
.
convert_to_mace_pb
(
FLAGS
.
model_file
,
FLAGS
.
input_node
,
input_shape
,
FLAGS
.
output_node
,
FLAGS
.
data_type
,
FLAGS
.
runtime
,
FLAGS
.
winograd
)
elif
FLAGS
.
platform
==
'caffe'
:
from
lib.python.tools
import
caffe_converter_lib
output_graph_def
=
caffe_converter_lib
.
convert_to_mace_pb
(
FLAGS
.
model_file
,
FLAGS
.
weight_file
,
FLAGS
.
input_node
,
FLAGS
.
output_node
,
FLAGS
.
data_type
,
FLAGS
.
runtime
,
FLAGS
.
winograd
)
if
FLAGS
.
output_type
==
'source'
:
source_converter_lib
.
convert_to_source
(
output_graph_def
,
mode_pb_checksum
,
FLAGS
.
template
,
FLAGS
.
obfuscate
,
FLAGS
.
model_tag
,
FLAGS
.
output
,
FLAGS
.
runtime
,
FLAGS
.
embed_model_data
)
else
:
with
open
(
FLAGS
.
output
,
"wb"
)
as
f
:
f
.
write
(
output_graph_def
.
SerializeToString
())
with
open
(
FLAGS
.
output
+
'_txt'
,
"wb"
)
as
f
:
# output_graph_def.ClearField('tensors')
f
.
write
(
str
(
output_graph_def
))
print
(
"Model conversion is completed."
)
def
str2bool
(
v
):
if
v
.
lower
()
in
(
'yes'
,
'true'
,
't'
,
'y'
,
'1'
):
return
True
elif
v
.
lower
()
in
(
'no'
,
'false'
,
'f'
,
'n'
,
'0'
):
return
False
else
:
raise
argparse
.
ArgumentTypeError
(
'Boolean value expected.'
)
def
parse_args
():
"""Parses command line arguments."""
parser
=
argparse
.
ArgumentParser
()
parser
.
register
(
"type"
,
"bool"
,
lambda
v
:
v
.
lower
()
==
"true"
)
parser
.
add_argument
(
"--model_file"
,
type
=
str
,
default
=
""
,
help
=
"TensorFlow
\'
GraphDef
\'
file to load, Caffe prototxt file to load."
)
parser
.
add_argument
(
"--weight_file"
,
type
=
str
,
default
=
""
,
help
=
"Caffe data file to load."
)
parser
.
add_argument
(
"--output"
,
type
=
str
,
default
=
""
,
help
=
"File to save the output graph to."
)
parser
.
add_argument
(
"--runtime"
,
type
=
str
,
default
=
"cpu"
,
help
=
"Runtime: cpu/gpu/dsp"
)
parser
.
add_argument
(
"--input_node"
,
type
=
str
,
default
=
"input_node"
,
help
=
"e.g., input_node"
)
parser
.
add_argument
(
"--output_node"
,
type
=
str
,
default
=
"softmax"
,
help
=
"e.g., softmax"
)
parser
.
add_argument
(
"--data_type"
,
type
=
str
,
default
=
'DT_FLOAT'
,
help
=
"e.g., DT_HALF/DT_FLOAT"
)
parser
.
add_argument
(
"--output_type"
,
type
=
str
,
default
=
"pb"
,
help
=
"output type: source/pb"
)
parser
.
add_argument
(
"--template"
,
type
=
str
,
default
=
""
,
help
=
"template path"
)
parser
.
add_argument
(
"--obfuscate"
,
type
=
str2bool
,
nargs
=
'?'
,
const
=
False
,
default
=
False
,
help
=
"obfuscate model names"
)
parser
.
add_argument
(
"--model_tag"
,
type
=
str
,
default
=
""
,
help
=
"model tag for generated function and namespace"
)
parser
.
add_argument
(
"--winograd"
,
type
=
str2bool
,
nargs
=
'?'
,
const
=
False
,
default
=
False
,
help
=
"open winograd convolution or not"
)
parser
.
add_argument
(
"--dsp_mode"
,
type
=
int
,
default
=
0
,
help
=
"dsp run mode, defalut=0"
)
parser
.
add_argument
(
"--input_shape"
,
type
=
str
,
default
=
""
,
help
=
"input shape."
)
parser
.
add_argument
(
"--platform"
,
type
=
str
,
default
=
"tensorflow"
,
help
=
"tensorflow/caffe"
)
parser
.
add_argument
(
"--embed_model_data"
,
type
=
str2bool
,
default
=
True
,
help
=
"input shape."
)
return
parser
.
parse_known_args
()
if
__name__
==
'__main__'
:
FLAGS
,
unparsed
=
parse_args
()
main
(
unused_args
=
[
sys
.
argv
[
0
]]
+
unparsed
)
python/tools/source_converter_lib.py
浏览文件 @
e6f32c57
import
struct
import
os
import
uuid
import
numpy
as
np
import
hashlib
from
tensorflow
import
gfile
from
lib.proto
import
mace_pb2
from
jinja2
import
Environment
,
FileSystemLoader
...
...
@@ -82,7 +80,6 @@ def rename_tensor(net_def):
class
TensorInfo
:
def
__init__
(
self
,
id
,
t
,
runtime
):
self
.
id
=
id
self
.
name
=
t
.
name
self
.
data_type
=
mace_pb2
.
DataType
.
Name
(
t
.
data_type
)
if
t
.
data_type
==
mace_pb2
.
DT_FLOAT
:
if
runtime
==
'gpu'
:
...
...
@@ -136,7 +133,7 @@ def convert_to_source(net_def, mode_pb_checksum, template, obfuscate, model_tag,
)
model_data
.
extend
(
tensor_info
.
data
)
offset
+=
len
(
tensor_info
.
data
)
with
gfile
.
GFile
(
output_dir
+
'tensor'
+
str
(
counter
)
+
'.cc'
,
"wb"
)
as
f
:
with
open
(
output_dir
+
'tensor'
+
str
(
counter
)
+
'.cc'
,
"wb"
)
as
f
:
f
.
write
(
source
)
counter
+=
1
...
...
@@ -148,7 +145,7 @@ def convert_to_source(net_def, mode_pb_checksum, template, obfuscate, model_tag,
model_data_size
=
offset
,
model_data
=
model_data
)
with
gfile
.
GFile
(
output_dir
+
'tensor_data'
+
'.cc'
,
"wb"
)
as
f
:
with
open
(
output_dir
+
'tensor_data'
+
'.cc'
,
"wb"
)
as
f
:
f
.
write
(
source
)
if
not
embed_model_data
:
f
=
open
(
output_dir
+
model_tag
+
'.data'
,
"wb"
)
...
...
@@ -167,7 +164,7 @@ def convert_to_source(net_def, mode_pb_checksum, template, obfuscate, model_tag,
mode
=
2
,
runtime
=
runtime
,
)
with
gfile
.
GFile
(
output_dir
+
'op'
+
str
(
counter
)
+
'.cc'
,
"wb"
)
as
f
:
with
open
(
output_dir
+
'op'
+
str
(
counter
)
+
'.cc'
,
"wb"
)
as
f
:
f
.
write
(
source
)
counter
+=
1
...
...
@@ -181,5 +178,5 @@ def convert_to_source(net_def, mode_pb_checksum, template, obfuscate, model_tag,
runtime
=
runtime
,
model_pb_checksum
=
mode_pb_checksum
)
with
gfile
.
GFile
(
output
,
"wb"
)
as
f
:
with
open
(
output
,
"wb"
)
as
f
:
f
.
write
(
source
)
python/tools/tf_converter_lib.py
浏览文件 @
e6f32c57
...
...
@@ -3,6 +3,7 @@ import tensorflow as tf
import
numpy
as
np
import
math
import
copy
from
tensorflow
import
gfile
from
lib.python.tools
import
memory_optimizer
from
tensorflow.core.framework
import
graph_pb2
from
tensorflow.core.framework
import
tensor_shape_pb2
...
...
@@ -958,10 +959,15 @@ def add_shape_info(input_graph_def, input_node, input_shape):
return
inputs_replaced_graph
def
convert_to_mace_pb
(
input_graph_def
,
input_node
,
input_shape
,
output_node
,
data_type
,
device
,
winograd
):
def
convert_to_mace_pb
(
model_file
,
input_node
,
input_shape
,
output_node
,
data_type
,
device
,
winograd
):
net_def
=
mace_pb2
.
NetDef
()
dt
=
data_type_map
[
data_type
]
input_graph_def
=
tf
.
GraphDef
()
with
gfile
.
Open
(
model_file
,
"rb"
)
as
f
:
data
=
f
.
read
()
input_graph_def
.
ParseFromString
(
data
)
input_graph_def
=
add_shape_info
(
input_graph_def
,
input_node
,
input_shape
)
with
tf
.
Session
()
as
session
:
with
session
.
graph
.
as_default
()
as
graph
:
...
...
@@ -971,7 +977,7 @@ def convert_to_mace_pb(input_graph_def, input_node, input_shape, output_node, da
converter
.
convert
(
input_node
,
output_node
)
optimizer
=
Optimizer
(
net_def
,
device
)
net_def
=
optimizer
.
optimize
()
print
"
PB
Converted."
print
"
Model
Converted."
if
device
==
'gpu'
:
print
"start optimize memory."
mem_optimizer
=
memory_optimizer
.
MemoryOptimizer
(
net_def
)
...
...
python/tools/tf_dsp_converter_lib.py
浏览文件 @
e6f32c57
from
lib.proto
import
mace_pb2
import
tensorflow
as
tf
from
tensorflow
import
gfile
from
operator
import
mul
from
dsp_ops
import
DspOps
from
lib.python.tools
import
graph_util
...
...
@@ -359,12 +360,17 @@ def fuse_quantize(net_def, input_node, output_node):
new_net_def
.
op
.
extend
(
new_ops
)
return
new_net_def
def
convert_to_mace_pb
(
input_graph_def
,
input_node
,
output_node
,
dsp_mode
):
def
convert_to_mace_pb
(
model_file
,
input_node
,
output_node
,
dsp_mode
):
"""
nnlib does not have batch norm, so use tensorflow optimizer to fold
batch norm with convolution. The fold optimization reorders ops, so
we sort ops first by topology.
"""
input_graph_def
=
tf
.
GraphDef
()
with
gfile
.
Open
(
model_file
,
"rb"
)
as
f
:
data
=
f
.
read
()
input_graph_def
.
ParseFromString
(
data
)
input_graph_def
=
graph_util
.
sort_tf_graph
(
input_graph_def
)
net_def
=
mace_pb2
.
NetDef
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录