bitops.c 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Bit operations.
 *
 * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include "server.h"
32 33

/* -----------------------------------------------------------------------------
A
antirez 已提交
34
 * Helpers and low level bit functions.
35 36
 * -------------------------------------------------------------------------- */

A
antirez 已提交
37 38 39
/* Count number of bits set in the binary array pointed by 's' and long
 * 'count' bytes. The implementation of this function is required to
 * work with a input string length up to 512 MB. */
40
size_t redisPopcount(void *s, long count) {
41
    size_t bits = 0;
42 43
    unsigned char *p = s;
    uint32_t *p4;
A
antirez 已提交
44 45
    static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};

46 47 48 49 50 51
    /* Count initial bytes not aligned to 32 bit. */
    while((unsigned long)p & 3 && count) {
        bits += bitsinbyte[*p++];
        count--;
    }

52
    /* Count bits 28 bytes at a time */
53
    p4 = (uint32_t*)p;
54 55
    while(count>=28) {
        uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7;
A
antirez 已提交
56 57 58 59 60

        aux1 = *p4++;
        aux2 = *p4++;
        aux3 = *p4++;
        aux4 = *p4++;
61 62 63 64
        aux5 = *p4++;
        aux6 = *p4++;
        aux7 = *p4++;
        count -= 28;
A
antirez 已提交
65 66 67 68 69 70 71 72 73

        aux1 = aux1 - ((aux1 >> 1) & 0x55555555);
        aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333);
        aux2 = aux2 - ((aux2 >> 1) & 0x55555555);
        aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333);
        aux3 = aux3 - ((aux3 >> 1) & 0x55555555);
        aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333);
        aux4 = aux4 - ((aux4 >> 1) & 0x55555555);
        aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333);
74 75 76 77 78 79 80 81 82 83 84 85 86
        aux5 = aux5 - ((aux5 >> 1) & 0x55555555);
        aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333);
        aux6 = aux6 - ((aux6 >> 1) & 0x55555555);
        aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333);
        aux7 = aux7 - ((aux7 >> 1) & 0x55555555);
        aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333);
        bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) +
                    ((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) +
                    ((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) +
                    ((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) +
                    ((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) +
                    ((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) +
                    ((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24;
A
antirez 已提交
87
    }
A
antirez 已提交
88
    /* Count the remaining bytes. */
A
antirez 已提交
89
    p = (unsigned char*)p4;
A
antirez 已提交
90 91 92 93
    while(count--) bits += bitsinbyte[*p++];
    return bits;
}

A
antirez 已提交
94 95 96 97 98 99 100
/* Return the position of the first bit set to one (if 'bit' is 1) or
 * zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes.
 *
 * The function is guaranteed to return a value >= 0 if 'bit' is 0 since if
 * no zero bit is found, it returns count*8 assuming the string is zero
 * padded on the right. However if 'bit' is 1 it is possible that there is
 * not a single set bit in the bitmap. In this special case -1 is returned. */
101
long redisBitpos(void *s, unsigned long count, int bit) {
A
antirez 已提交
102 103 104 105
    unsigned long *l;
    unsigned char *c;
    unsigned long skipval, word = 0, one;
    long pos = 0; /* Position of bit, to return to the caller. */
106
    unsigned long j;
A
antirez 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    /* Process whole words first, seeking for first word that is not
     * all ones or all zeros respectively if we are lookig for zeros
     * or ones. This is much faster with large strings having contiguous
     * blocks of 1 or 0 bits compared to the vanilla bit per bit processing.
     *
     * Note that if we start from an address that is not aligned
     * to sizeof(unsigned long) we consume it byte by byte until it is
     * aligned. */

    /* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */
    skipval = bit ? 0 : UCHAR_MAX;
    c = (unsigned char*) s;
    while((unsigned long)c & (sizeof(*l)-1) && count) {
        if (*c != skipval) break;
        c++;
        count--;
        pos += 8;
    }

    /* Skip bits with full word step. */
    skipval = bit ? 0 : ULONG_MAX;
    l = (unsigned long*) c;
    while (count >= sizeof(*l)) {
        if (*l != skipval) break;
        l++;
        count -= sizeof(*l);
        pos += sizeof(*l)*8;
    }

    /* Load bytes into "word" considering the first byte as the most significant
     * (we basically consider it as written in big endian, since we consider the
     * string as a set of bits from left to right, with the first bit at position
     * zero.
     *
     * Note that the loading is designed to work even when the bytes left
     * (count) are less than a full word. We pad it with zero on the right. */
    c = (unsigned char*)l;
    for (j = 0; j < sizeof(*l); j++) {
        word <<= 8;
        if (count) {
            word |= *c;
            c++;
            count--;
        }
    }

    /* Special case:
     * If bits in the string are all zero and we are looking for one,
     * return -1 to signal that there is not a single "1" in the whole
     * string. This can't happen when we are looking for "0" as we assume
     * that the right of the string is zero padded. */
    if (bit == 1 && word == 0) return -1;

    /* Last word left, scan bit by bit. The first thing we need is to
     * have a single "1" set in the most significant position in an
     * unsigned long. We don't know the size of the long so we use a
     * simple trick. */
    one = ULONG_MAX; /* All bits set to 1.*/
    one >>= 1;       /* All bits set to 1 but the MSB. */
    one = ~one;      /* All bits set to 0 but the MSB. */

    while(one) {
        if (((one & word) != 0) == bit) return pos;
        pos++;
        one >>= 1;
    }

    /* If we reached this point, there is a bug in the algorithm, since
     * the case of no match is handled as a special case before. */
A
antirez 已提交
177
    serverPanic("End of redisBitpos() reached.");
A
antirez 已提交
178
    return 0; /* Just to avoid warnings. */
A
antirez 已提交
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* The following set.*Bitfield and get.*Bitfield functions implement setting
 * and getting arbitrary size (up to 64 bits) signed and unsigned integers
 * at arbitrary positions into a bitmap.
 *
 * The representation considers the bitmap as having the bit number 0 to be
 * the most significant bit of the first byte, and so forth, so for example
 * setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap
 * previously set to all zeroes, will produce the following representation:
 *
 * +--------+--------+
 * |00000001|01110000|
 * +--------+--------+
 *
 * When offsets and integer sizes are aligned to bytes boundaries, this is the
 * same as big endian, however when such alignment does not exist, its important
 * to also understand how the bits inside a byte are ordered.
 *
 * Note that this format follows the same convention as SETBIT and related
 * commands.
 */

void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {
    uint64_t byte, bit, byteval, bitval, j;

    for (j = 0; j < bits; j++) {
206
        bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        byte = offset >> 3;
        bit = 7 - (offset & 0x7);
        byteval = p[byte];
        byteval &= ~(1 << bit);
        byteval |= bitval << bit;
        p[byte] = byteval & 0xff;
        offset++;
    }
}

void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {
    uint64_t uv;

    if (value >= 0)
        uv = value;
    else
        uv = UINT64_MAX + value + 1;
    setUnsignedBitfield(p,offset,bits,uv);
}

uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
    uint64_t byte, bit, byteval, bitval, j, value = 0;

    for (j = 0; j < bits; j++) {
        byte = offset >> 3;
        bit = 7 - (offset & 0x7);
        byteval = p[byte];
        bitval = (byteval >> bit) & 1;
        value = (value<<1) | bitval;
        offset++;
    }
    return value;
}

int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
    int64_t value = getUnsignedBitfield(p,offset,bits);
    /* If the top significant bit is 1, propagate it to all the
     * higher bits for two complement representation of signed
     * integers. */
246
    if (value & ((uint64_t)1 << (bits-1)))
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        value |= ((uint64_t)-1) << bits;
    return value;
}

/* The following two functions detect overflow of a value in the context
 * of storing it as an unsigned or signed integer with the specified
 * number of bits. The functions both take the value and a possible increment.
 * If no overflow could happen and the value+increment fit inside the limits,
 * then zero is returned, otherwise in case of overflow, 1 is returned,
 * otherwise in case of underflow, -1 is returned.
 *
 * When non-zero is returned (oferflow or underflow), if not NULL, *limit is
 * set to the value the operation should result when an overflow happens,
 * depending on the specified overflow semantics:
 *
 * For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that
 * you can store in that integer. when -1 is returned, *limit is set to the
 * minimum value that an integer of that size can represent.
 *
 * For BFOVERFLOW_WRAP *limit is set by performing the operation in order to
 * "wrap" around towards zero for unsigned integers, or towards the most
 * negative number that is possible to represent for signed integers. */

#define BFOVERFLOW_WRAP 0
#define BFOVERFLOW_SAT 1
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */

int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {
275
    uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    int64_t maxincr = max-value;
    int64_t minincr = -value;

    if (value > max || (incr > 0 && incr > maxincr)) {
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = max;
            }
        }
        return 1;
    } else if (incr < 0 && incr < minincr) {
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = 0;
            }
        }
        return -1;
    }
    return 0;

handle_wrap:
    {
        uint64_t mask = ((int64_t)-1) << bits;
        uint64_t res = value+incr;

        res &= ~mask;
        *limit = res;
    }
    return 1;
}

int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {
312
    int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);
313 314 315 316 317 318 319 320
    int64_t min = (-max)-1;

    /* Note that maxincr and minincr could overflow, but we use the values
     * only after checking 'value' range, so when we use it no overflow
     * happens. */
    int64_t maxincr = max-value;
    int64_t minincr = min-value;

321 322
    if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr))
    {
323 324 325 326 327 328 329 330
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = max;
            }
        }
        return 1;
331
    } else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = min;
            }
        }
        return -1;
    }
    return 0;

handle_wrap:
    {
        uint64_t mask = ((int64_t)-1) << bits;
        uint64_t msb = (uint64_t)1 << (bits-1);
        uint64_t a = value, b = incr, c;
        c = a+b; /* Perform addition as unsigned so that's defined. */

        /* If the sign bit is set, propagate to all the higher order
         * bits, to cap the negative value. If it's clear, mask to
         * the positive integer limit. */
        if (c & msb) {
            c |= mask;
        } else {
            c &= ~mask;
        }
        *limit = c;
    }
    return 1;
}

/* Debugging function. Just show bits in the specified bitmap. Not used
 * but here for not having to rewrite it when debugging is needed. */
void printBits(unsigned char *p, unsigned long count) {
    unsigned long j, i, byte;

    for (j = 0; j < count; j++) {
        byte = p[j];
        for (i = 0x80; i > 0; i /= 2)
            printf("%c", (byte & i) ? '1' : '0');
        printf("|");
    }
    printf("\n");
}

A
antirez 已提交
377 378 379 380 381 382 383 384 385
/* -----------------------------------------------------------------------------
 * Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.
 * -------------------------------------------------------------------------- */

#define BITOP_AND   0
#define BITOP_OR    1
#define BITOP_XOR   2
#define BITOP_NOT   3

386 387 388 389 390 391
#define BITFIELDOP_GET 0
#define BITFIELDOP_SET 1
#define BITFIELDOP_INCRBY 2

/* This helper function used by GETBIT / SETBIT parses the bit offset argument
 * making sure an error is returned if it is negative or if it overflows
392 393 394 395 396 397
 * Redis 512 MB limit for the string value.
 *
 * If the 'hash' argument is true, and 'bits is positive, then the command
 * will also parse bit offsets prefixed by "#". In such a case the offset
 * is multiplied by 'bits'. This is useful for the BITFIELD command. */
int getBitOffsetFromArgument(client *c, robj *o, size_t *offset, int hash, int bits) {
398 399
    long long loffset;
    char *err = "bit offset is not an integer or out of range";
400 401
    char *p = o->ptr;
    size_t plen = sdslen(p);
A
antirez 已提交
402
    int usehash = 0;
403 404

    /* Handle #<offset> form. */
A
antirez 已提交
405
    if (p[0] == '#' && hash && bits > 0) usehash = 1;
406

A
antirez 已提交
407
    if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {
408
        addReplyError(c,err);
409
        return C_ERR;
410 411 412
    }

    /* Adjust the offset by 'bits' for #<offset> form. */
A
antirez 已提交
413
    if (usehash) loffset *= bits;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    /* Limit offset to 512MB in bytes */
    if ((loffset < 0) || ((unsigned long long)loffset >> 3) >= (512*1024*1024))
    {
        addReplyError(c,err);
        return C_ERR;
    }

    *offset = (size_t)loffset;
    return C_OK;
}

/* This helper function for BITFIELD parses a bitfield type in the form
 * <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and
 * the bits is a value between 1 and 64. However 64 bits unsigned integers
 * are reported as an error because of current limitations of Redis protocol
 * to return unsigned integer values greater than INT64_MAX.
 *
 * On error C_ERR is returned and an error is sent to the client. */
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {
    char *p = o->ptr;
    char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";
    long long llbits;

    if (p[0] == 'i') {
        *sign = 1;
    } else if (p[0] == 'u') {
        *sign = 0;
    } else {
        addReplyError(c,err);
        return C_ERR;
    }

    if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||
        llbits < 1 ||
449 450
        (*sign == 1 && llbits > 64) ||
        (*sign == 0 && llbits > 63))
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    {
        addReplyError(c,err);
        return C_ERR;
    }
    *bits = llbits;
    return C_OK;
}

/* This is an helper function for commands implementations that need to write
 * bits to a string object. The command creates or pad with zeroes the string
 * so that the 'maxbit' bit can be addressed. The object is finally
 * returned. Otherwise if the key holds a wrong type NULL is returned and
 * an error is sent to the client. */
robj *lookupStringForBitCommand(client *c, size_t maxbit) {
    size_t byte = maxbit >> 3;
    robj *o = lookupKeyWrite(c->db,c->argv[1]);

    if (o == NULL) {
        o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));
        dbAdd(c->db,c->argv[1],o);
    } else {
        if (checkType(c,o,OBJ_STRING)) return NULL;
        o = dbUnshareStringValue(c->db,c->argv[1],o);
        o->ptr = sdsgrowzero(o->ptr,byte+1);
    }
    return o;
}

479
/* SETBIT key offset bitvalue */
480
void setbitCommand(client *c) {
481 482 483
    robj *o;
    char *err = "bit is not an integer or out of range";
    size_t bitoffset;
484
    ssize_t byte, bit;
485 486 487
    int byteval, bitval;
    long on;

488
    if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
489 490
        return;

491
    if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)
492 493 494 495 496 497 498 499
        return;

    /* Bits can only be set or cleared... */
    if (on & ~1) {
        addReplyError(c,err);
        return;
    }

500
    if ((o = lookupStringForBitCommand(c,bitoffset)) == NULL) return;
501 502

    /* Get current values */
503
    byte = bitoffset >> 3;
A
antirez 已提交
504
    byteval = ((uint8_t*)o->ptr)[byte];
505 506 507 508 509 510
    bit = 7 - (bitoffset & 0x7);
    bitval = byteval & (1 << bit);

    /* Update byte with new bit value and return original value */
    byteval &= ~(1 << bit);
    byteval |= ((on & 0x1) << bit);
A
antirez 已提交
511
    ((uint8_t*)o->ptr)[byte] = byteval;
512
    signalModifiedKey(c->db,c->argv[1]);
A
antirez 已提交
513
    notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
514 515 516 517 518
    server.dirty++;
    addReply(c, bitval ? shared.cone : shared.czero);
}

/* GETBIT key offset */
519
void getbitCommand(client *c) {
520 521 522 523 524 525
    robj *o;
    char llbuf[32];
    size_t bitoffset;
    size_t byte, bit;
    size_t bitval = 0;

526
    if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
527 528 529
        return;

    if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
530
        checkType(c,o,OBJ_STRING)) return;
531 532 533

    byte = bitoffset >> 3;
    bit = 7 - (bitoffset & 0x7);
534
    if (sdsEncodedObject(o)) {
535
        if (byte < sdslen(o->ptr))
A
antirez 已提交
536
            bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit);
537 538 539
    } else {
        if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr))
            bitval = llbuf[byte] & (1 << bit);
540 541 542 543 544 545
    }

    addReply(c, bitval ? shared.cone : shared.czero);
}

/* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */
546
void bitopCommand(client *c) {
547 548
    char *opname = c->argv[1]->ptr;
    robj *o, *targetkey = c->argv[2];
549
    unsigned long op, j, numkeys;
G
guiquanz 已提交
550
    robj **objects;      /* Array of source objects. */
551
    unsigned char **src; /* Array of source strings pointers. */
552 553 554
    unsigned long *len, maxlen = 0; /* Array of length of src strings,
                                       and max len. */
    unsigned long minlen = 0;    /* Min len among the input keys. */
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    unsigned char *res = NULL; /* Resulting string. */

    /* Parse the operation name. */
    if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and"))
        op = BITOP_AND;
    else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or"))
        op = BITOP_OR;
    else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor"))
        op = BITOP_XOR;
    else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not"))
        op = BITOP_NOT;
    else {
        addReply(c,shared.syntaxerr);
        return;
    }

    /* Sanity check: NOT accepts only a single key argument. */
    if (op == BITOP_NOT && c->argc != 4) {
        addReplyError(c,"BITOP NOT must be called with a single source key.");
        return;
    }

    /* Lookup keys, and store pointers to the string objects into an array. */
    numkeys = c->argc - 3;
    src = zmalloc(sizeof(unsigned char*) * numkeys);
    len = zmalloc(sizeof(long) * numkeys);
581
    objects = zmalloc(sizeof(robj*) * numkeys);
582 583 584 585
    for (j = 0; j < numkeys; j++) {
        o = lookupKeyRead(c->db,c->argv[j+3]);
        /* Handle non-existing keys as empty strings. */
        if (o == NULL) {
586
            objects[j] = NULL;
587 588
            src[j] = NULL;
            len[j] = 0;
589
            minlen = 0;
590 591 592
            continue;
        }
        /* Return an error if one of the keys is not a string. */
593
        if (checkType(c,o,OBJ_STRING)) {
594 595 596 597
            unsigned long i;
            for (i = 0; i < j; i++) {
                if (objects[i])
                    decrRefCount(objects[i]);
598
            }
599 600
            zfree(src);
            zfree(len);
601
            zfree(objects);
602 603
            return;
        }
604 605 606
        objects[j] = getDecodedObject(o);
        src[j] = objects[j]->ptr;
        len[j] = sdslen(objects[j]->ptr);
607
        if (len[j] > maxlen) maxlen = len[j];
A
antirez 已提交
608
        if (j == 0 || len[j] < minlen) minlen = len[j];
609 610 611 612 613 614
    }

    /* Compute the bit operation, if at least one string is not empty. */
    if (maxlen) {
        res = (unsigned char*) sdsnewlen(NULL,maxlen);
        unsigned char output, byte;
615
        unsigned long i;
616

A
antirez 已提交
617 618 619 620
        /* Fast path: as far as we have data for all the input bitmaps we
         * can take a fast path that performs much better than the
         * vanilla algorithm. */
        j = 0;
621
        if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) {
A
antirez 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
            unsigned long *lp[16];
            unsigned long *lres = (unsigned long*) res;

            /* Note: sds pointer is always aligned to 8 byte boundary. */
            memcpy(lp,src,sizeof(unsigned long*)*numkeys);
            memcpy(res,src[0],minlen);

            /* Different branches per different operations for speed (sorry). */
            if (op == BITOP_AND) {
                while(minlen >= sizeof(unsigned long)*4) {
                    for (i = 1; i < numkeys; i++) {
                        lres[0] &= lp[i][0];
                        lres[1] &= lp[i][1];
                        lres[2] &= lp[i][2];
                        lres[3] &= lp[i][3];
                        lp[i]+=4;
                    }
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            } else if (op == BITOP_OR) {
                while(minlen >= sizeof(unsigned long)*4) {
                    for (i = 1; i < numkeys; i++) {
                        lres[0] |= lp[i][0];
                        lres[1] |= lp[i][1];
                        lres[2] |= lp[i][2];
                        lres[3] |= lp[i][3];
                        lp[i]+=4;
                    }
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            } else if (op == BITOP_XOR) {
                while(minlen >= sizeof(unsigned long)*4) {
                    for (i = 1; i < numkeys; i++) {
                        lres[0] ^= lp[i][0];
                        lres[1] ^= lp[i][1];
                        lres[2] ^= lp[i][2];
                        lres[3] ^= lp[i][3];
                        lp[i]+=4;
                    }
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            } else if (op == BITOP_NOT) {
                while(minlen >= sizeof(unsigned long)*4) {
                    lres[0] = ~lres[0];
                    lres[1] = ~lres[1];
                    lres[2] = ~lres[2];
                    lres[3] = ~lres[3];
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            }
        }

        /* j is set to the next byte to process by the previous loop. */
        for (; j < maxlen; j++) {
684 685 686 687 688 689 690 691 692 693 694 695 696
            output = (len[0] <= j) ? 0 : src[0][j];
            if (op == BITOP_NOT) output = ~output;
            for (i = 1; i < numkeys; i++) {
                byte = (len[i] <= j) ? 0 : src[i][j];
                switch(op) {
                case BITOP_AND: output &= byte; break;
                case BITOP_OR:  output |= byte; break;
                case BITOP_XOR: output ^= byte; break;
                }
            }
            res[j] = output;
        }
    }
697 698 699 700
    for (j = 0; j < numkeys; j++) {
        if (objects[j])
            decrRefCount(objects[j]);
    }
701 702
    zfree(src);
    zfree(len);
703
    zfree(objects);
704 705 706

    /* Store the computed value into the target key */
    if (maxlen) {
707
        o = createObject(OBJ_STRING,res);
708
        setKey(c->db,targetkey,o);
A
antirez 已提交
709
        notifyKeyspaceEvent(NOTIFY_STRING,"set",targetkey,c->db->id);
710 711 712
        decrRefCount(o);
    } else if (dbDelete(c->db,targetkey)) {
        signalModifiedKey(c->db,targetkey);
A
antirez 已提交
713
        notifyKeyspaceEvent(NOTIFY_GENERIC,"del",targetkey,c->db->id);
714 715 716 717 718 719
    }
    server.dirty++;
    addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */
}

/* BITCOUNT key [start end] */
720
void bitcountCommand(client *c) {
721
    robj *o;
H
Haruto Otake 已提交
722
    long start, end, strlen;
723 724 725 726 727
    unsigned char *p;
    char llbuf[32];

    /* Lookup, check for type, and return 0 for non existing keys. */
    if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
728
        checkType(c,o,OBJ_STRING)) return;
729 730 731

    /* Set the 'p' pointer to the string, that can be just a stack allocated
     * array if our string was integer encoded. */
732
    if (o->encoding == OBJ_ENCODING_INT) {
733 734 735 736 737 738 739 740 741
        p = (unsigned char*) llbuf;
        strlen = ll2string(llbuf,sizeof(llbuf),(long)o->ptr);
    } else {
        p = (unsigned char*) o->ptr;
        strlen = sdslen(o->ptr);
    }

    /* Parse start/end range if any. */
    if (c->argc == 4) {
742
        if (getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK)
743
            return;
744
        if (getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK)
745 746 747 748 749 750
            return;
        /* Convert negative indexes */
        if (start < 0) start = strlen+start;
        if (end < 0) end = strlen+end;
        if (start < 0) start = 0;
        if (end < 0) end = 0;
H
Haruto Otake 已提交
751
        if (end >= strlen) end = strlen-1;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    } else if (c->argc == 2) {
        /* The whole string. */
        start = 0;
        end = strlen-1;
    } else {
        /* Syntax error. */
        addReply(c,shared.syntaxerr);
        return;
    }

    /* Precondition: end >= 0 && end < strlen, so the only condition where
     * zero can be returned is: start > end. */
    if (start > end) {
        addReply(c,shared.czero);
    } else {
A
antirez 已提交
767
        long bytes = end-start+1;
768

769
        addReplyLongLong(c,redisPopcount(p+start,bytes));
770 771
    }
}
A
antirez 已提交
772

773
/* BITPOS key bit [start [end]] */
774
void bitposCommand(client *c) {
A
antirez 已提交
775 776 777 778
    robj *o;
    long bit, start, end, strlen;
    unsigned char *p;
    char llbuf[32];
779
    int end_given = 0;
A
antirez 已提交
780 781 782

    /* Parse the bit argument to understand what we are looking for, set
     * or clear bits. */
783
    if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL) != C_OK)
A
antirez 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796
        return;
    if (bit != 0 && bit != 1) {
        addReplyError(c, "The bit argument must be 1 or 0.");
        return;
    }

    /* If the key does not exist, from our point of view it is an infinite
     * array of 0 bits. If the user is looking for the fist clear bit return 0,
     * If the user is looking for the first set bit, return -1. */
    if ((o = lookupKeyRead(c->db,c->argv[1])) == NULL) {
        addReplyLongLong(c, bit ? -1 : 0);
        return;
    }
797
    if (checkType(c,o,OBJ_STRING)) return;
A
antirez 已提交
798 799 800

    /* Set the 'p' pointer to the string, that can be just a stack allocated
     * array if our string was integer encoded. */
801
    if (o->encoding == OBJ_ENCODING_INT) {
A
antirez 已提交
802 803 804 805 806 807 808 809
        p = (unsigned char*) llbuf;
        strlen = ll2string(llbuf,sizeof(llbuf),(long)o->ptr);
    } else {
        p = (unsigned char*) o->ptr;
        strlen = sdslen(o->ptr);
    }

    /* Parse start/end range if any. */
810
    if (c->argc == 4 || c->argc == 5) {
811
        if (getLongFromObjectOrReply(c,c->argv[3],&start,NULL) != C_OK)
A
antirez 已提交
812
            return;
813
        if (c->argc == 5) {
814
            if (getLongFromObjectOrReply(c,c->argv[4],&end,NULL) != C_OK)
815 816 817 818 819
                return;
            end_given = 1;
        } else {
            end = strlen-1;
        }
A
antirez 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
        /* Convert negative indexes */
        if (start < 0) start = strlen+start;
        if (end < 0) end = strlen+end;
        if (start < 0) start = 0;
        if (end < 0) end = 0;
        if (end >= strlen) end = strlen-1;
    } else if (c->argc == 3) {
        /* The whole string. */
        start = 0;
        end = strlen-1;
    } else {
        /* Syntax error. */
        addReply(c,shared.syntaxerr);
        return;
    }

    /* For empty ranges (start > end) we return -1 as an empty range does
     * not contain a 0 nor a 1. */
    if (start > end) {
        addReplyLongLong(c, -1);
    } else {
        long bytes = end-start+1;
        long pos = redisBitpos(p+start,bytes,bit);

844 845 846
        /* If we are looking for clear bits, and the user specified an exact
         * range with start-end, we can't consider the right of the range as
         * zero padded (as we do when no explicit end is given).
A
antirez 已提交
847
         *
848
         * So if redisBitpos() returns the first bit outside the range,
A
antirez 已提交
849 850
         * we return -1 to the caller, to mean, in the specified range there
         * is not a single "0" bit. */
851
        if (end_given && bit == 0 && pos == bytes*8) {
A
antirez 已提交
852 853 854 855 856 857 858
            addReplyLongLong(c,-1);
            return;
        }
        if (pos != -1) pos += start*8; /* Adjust for the bytes we skipped. */
        addReplyLongLong(c,pos);
    }
}
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

/* BITFIELD key subcommmand-1 arg ... subcommand-2 arg ... subcommand-N ...
 *
 * Supported subcommands:
 *
 * GET <type> <offset>
 * SET <type> <offset> <value>
 * INCRBY <type> <offset> <increment>
 * OVERFLOW [WRAP|SAT|FAIL]
 */

struct bitfieldOp {
    uint64_t offset;    /* Bitfield offset. */
    int64_t i64;        /* Increment amount (INCRBY) or SET value */
    int opcode;         /* Operation id. */
    int owtype;         /* Overflow type to use. */
    int bits;           /* Integer bitfield bits width. */
    int sign;           /* True if signed, otherwise unsigned op. */
};

void bitfieldCommand(client *c) {
    robj *o;
    size_t bitoffset;
    int j, numops = 0, changes = 0;
    struct bitfieldOp *ops = NULL; /* Array of ops to execute at end. */
    int owtype = BFOVERFLOW_WRAP; /* Overflow type. */

    for (j = 2; j < c->argc; j++) {
        int remargs = c->argc-j-1; /* Remaining args other than current. */
        char *subcmd = c->argv[j]->ptr; /* Current command name. */
        int opcode; /* Current operation code. */
        long long i64 = 0;  /* Signed SET value. */
        int sign = 0; /* Signed or unsigned type? */
        int bits = 0; /* Bitfield width in bits. */

        if (!strcasecmp(subcmd,"get") && remargs >= 2)
            opcode = BITFIELDOP_GET;
        else if (!strcasecmp(subcmd,"set") && remargs >= 3)
            opcode = BITFIELDOP_SET;
        else if (!strcasecmp(subcmd,"incrby") && remargs >= 3)
            opcode = BITFIELDOP_INCRBY;
        else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) {
            char *owtypename = c->argv[j+1]->ptr;
            j++;
            if (!strcasecmp(owtypename,"wrap"))
                owtype = BFOVERFLOW_WRAP;
            else if (!strcasecmp(owtypename,"sat"))
                owtype = BFOVERFLOW_SAT;
            else if (!strcasecmp(owtypename,"fail"))
                owtype = BFOVERFLOW_FAIL;
            else {
                addReplyError(c,"Invalid OVERFLOW type specified");
                zfree(ops);
                return;
            }
            continue;
        } else {
            addReply(c,shared.syntaxerr);
            zfree(ops);
            return;
        }

        /* Get the type and offset arguments, common to all the ops. */
        if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK) {
            zfree(ops);
            return;
        }

927
        if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK){
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
            zfree(ops);
            return;
        }

        /* INCRBY and SET require another argument. */
        if (opcode != BITFIELDOP_GET) {
            if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL) != C_OK){
                zfree(ops);
                return;
            }
        }

        /* Populate the array of operations we'll process. */
        ops = zrealloc(ops,sizeof(*ops)*(numops+1));
        ops[numops].offset = bitoffset;
        ops[numops].i64 = i64;
        ops[numops].opcode = opcode;
        ops[numops].owtype = owtype;
        ops[numops].bits = bits;
        ops[numops].sign = sign;
        numops++;

        j += 3 - (opcode == BITFIELDOP_GET);
    }

    addReplyMultiBulkLen(c,numops);

    /* Actually process the operations. */
    for (j = 0; j < numops; j++) {
        struct bitfieldOp *thisop = ops+j;

        /* Execute the operation. */
        if (thisop->opcode == BITFIELDOP_SET ||
            thisop->opcode == BITFIELDOP_INCRBY)
        {
            /* SET and INCRBY: We handle both with the same code path
             * for simplicity. SET return value is the previous value so
             * we need fetch & store as well. */

967
            if ((o = lookupStringForBitCommand(c,thisop->offset + thisop->bits))
968
                 == NULL) return;
969

970 971 972
            /* We need two different but very similar code paths for signed
             * and unsigned operations, since the set of functions to get/set
             * the integers and the used variables types are different. */
973
            if (thisop->sign) {
974
                int64_t oldval, newval, wrapped, retval;
975 976 977 978 979 980 981 982 983 984
                int overflow;

                oldval = getSignedBitfield(o->ptr,thisop->offset,
                        thisop->bits);

                if (thisop->opcode == BITFIELDOP_INCRBY) {
                    newval = oldval + thisop->i64;
                    overflow = checkSignedBitfieldOverflow(oldval,
                            thisop->i64,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
985
                    retval = newval;
986 987 988 989 990
                } else {
                    newval = thisop->i64;
                    overflow = checkSignedBitfieldOverflow(newval,
                            0,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
991
                    retval = oldval;
992
                }
993 994 995

                /* On overflow of type is "FAIL", don't write and return
                 * NULL to signal the condition. */
996
                if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
997
                    addReplyLongLong(c,retval);
998 999
                    setSignedBitfield(o->ptr,thisop->offset,
                                      thisop->bits,newval);
1000 1001
                } else {
                    addReply(c,shared.nullbulk);
1002 1003
                }
            } else {
1004
                uint64_t oldval, newval, wrapped, retval;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                int overflow;

                oldval = getUnsignedBitfield(o->ptr,thisop->offset,
                        thisop->bits);

                if (thisop->opcode == BITFIELDOP_INCRBY) {
                    newval = oldval + thisop->i64;
                    overflow = checkUnsignedBitfieldOverflow(oldval,
                            thisop->i64,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
1015
                    retval = newval;
1016 1017 1018 1019 1020
                } else {
                    newval = thisop->i64;
                    overflow = checkUnsignedBitfieldOverflow(newval,
                            0,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
                    retval = oldval;
                }
                /* On overflow of type is "FAIL", don't write and return
                 * NULL to signal the condition. */
                if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
                    addReplyLongLong(c,retval);
                    setUnsignedBitfield(o->ptr,thisop->offset,
                                        thisop->bits,newval);
                } else {
                    addReply(c,shared.nullbulk);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
                }
            }
            changes++;
        } else {
            /* GET */
            o = lookupKeyRead(c->db,c->argv[1]);
            size_t olen = (o == NULL) ? 0 : sdslen(o->ptr);
            unsigned char buf[9];

            /* For GET we use a trick: before executing the operation
             * copy up to 9 bytes to a local buffer, so that we can easily
             * execute up to 64 bit operations that are at actual string
             * object boundaries. */
            memset(buf,0,9);
            unsigned char *src = o ? o->ptr : NULL;
            int i;
            size_t byte = thisop->offset >> 3;
            for (i = 0; i < 9; i++) {
                if (src == NULL || i+byte >= olen) break;
                buf[i] = src[i+byte];
            }

            /* Now operate on the copied buffer which is guaranteed
             * to be zero-padded. */
            if (thisop->sign) {
                int64_t val = getSignedBitfield(buf,thisop->offset-(byte*8),
                                            thisop->bits);
                addReplyLongLong(c,val);
            } else {
                uint64_t val = getUnsignedBitfield(buf,thisop->offset-(byte*8),
                                            thisop->bits);
                addReplyLongLong(c,val);
            }
        }
    }

    if (changes) {
        signalModifiedKey(c->db,c->argv[1]);
        notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
        server.dirty += changes;
    }
    zfree(ops);
}