bitops.c 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Bit operations.
 *
 * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include "server.h"
32 33

/* -----------------------------------------------------------------------------
A
antirez 已提交
34
 * Helpers and low level bit functions.
35 36
 * -------------------------------------------------------------------------- */

A
antirez 已提交
37 38 39
/* Count number of bits set in the binary array pointed by 's' and long
 * 'count' bytes. The implementation of this function is required to
 * work with a input string length up to 512 MB. */
40
size_t redisPopcount(void *s, long count) {
41
    size_t bits = 0;
42 43
    unsigned char *p = s;
    uint32_t *p4;
A
antirez 已提交
44 45
    static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};

46 47 48 49 50 51
    /* Count initial bytes not aligned to 32 bit. */
    while((unsigned long)p & 3 && count) {
        bits += bitsinbyte[*p++];
        count--;
    }

52
    /* Count bits 28 bytes at a time */
53
    p4 = (uint32_t*)p;
54 55
    while(count>=28) {
        uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7;
A
antirez 已提交
56 57 58 59 60

        aux1 = *p4++;
        aux2 = *p4++;
        aux3 = *p4++;
        aux4 = *p4++;
61 62 63 64
        aux5 = *p4++;
        aux6 = *p4++;
        aux7 = *p4++;
        count -= 28;
A
antirez 已提交
65 66 67 68 69 70 71 72 73

        aux1 = aux1 - ((aux1 >> 1) & 0x55555555);
        aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333);
        aux2 = aux2 - ((aux2 >> 1) & 0x55555555);
        aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333);
        aux3 = aux3 - ((aux3 >> 1) & 0x55555555);
        aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333);
        aux4 = aux4 - ((aux4 >> 1) & 0x55555555);
        aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333);
74 75 76 77 78 79 80 81 82 83 84 85 86
        aux5 = aux5 - ((aux5 >> 1) & 0x55555555);
        aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333);
        aux6 = aux6 - ((aux6 >> 1) & 0x55555555);
        aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333);
        aux7 = aux7 - ((aux7 >> 1) & 0x55555555);
        aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333);
        bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) +
                    ((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) +
                    ((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) +
                    ((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) +
                    ((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) +
                    ((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) +
                    ((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24;
A
antirez 已提交
87
    }
A
antirez 已提交
88
    /* Count the remaining bytes. */
A
antirez 已提交
89
    p = (unsigned char*)p4;
A
antirez 已提交
90 91 92 93
    while(count--) bits += bitsinbyte[*p++];
    return bits;
}

A
antirez 已提交
94 95 96 97 98 99 100
/* Return the position of the first bit set to one (if 'bit' is 1) or
 * zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes.
 *
 * The function is guaranteed to return a value >= 0 if 'bit' is 0 since if
 * no zero bit is found, it returns count*8 assuming the string is zero
 * padded on the right. However if 'bit' is 1 it is possible that there is
 * not a single set bit in the bitmap. In this special case -1 is returned. */
101
long redisBitpos(void *s, unsigned long count, int bit) {
A
antirez 已提交
102 103 104 105
    unsigned long *l;
    unsigned char *c;
    unsigned long skipval, word = 0, one;
    long pos = 0; /* Position of bit, to return to the caller. */
106
    unsigned long j;
A
antirez 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    /* Process whole words first, seeking for first word that is not
     * all ones or all zeros respectively if we are lookig for zeros
     * or ones. This is much faster with large strings having contiguous
     * blocks of 1 or 0 bits compared to the vanilla bit per bit processing.
     *
     * Note that if we start from an address that is not aligned
     * to sizeof(unsigned long) we consume it byte by byte until it is
     * aligned. */

    /* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */
    skipval = bit ? 0 : UCHAR_MAX;
    c = (unsigned char*) s;
    while((unsigned long)c & (sizeof(*l)-1) && count) {
        if (*c != skipval) break;
        c++;
        count--;
        pos += 8;
    }

    /* Skip bits with full word step. */
    skipval = bit ? 0 : ULONG_MAX;
    l = (unsigned long*) c;
    while (count >= sizeof(*l)) {
        if (*l != skipval) break;
        l++;
        count -= sizeof(*l);
        pos += sizeof(*l)*8;
    }

    /* Load bytes into "word" considering the first byte as the most significant
     * (we basically consider it as written in big endian, since we consider the
     * string as a set of bits from left to right, with the first bit at position
     * zero.
     *
     * Note that the loading is designed to work even when the bytes left
     * (count) are less than a full word. We pad it with zero on the right. */
    c = (unsigned char*)l;
    for (j = 0; j < sizeof(*l); j++) {
        word <<= 8;
        if (count) {
            word |= *c;
            c++;
            count--;
        }
    }

    /* Special case:
     * If bits in the string are all zero and we are looking for one,
     * return -1 to signal that there is not a single "1" in the whole
     * string. This can't happen when we are looking for "0" as we assume
     * that the right of the string is zero padded. */
    if (bit == 1 && word == 0) return -1;

    /* Last word left, scan bit by bit. The first thing we need is to
     * have a single "1" set in the most significant position in an
     * unsigned long. We don't know the size of the long so we use a
     * simple trick. */
    one = ULONG_MAX; /* All bits set to 1.*/
    one >>= 1;       /* All bits set to 1 but the MSB. */
    one = ~one;      /* All bits set to 0 but the MSB. */

    while(one) {
        if (((one & word) != 0) == bit) return pos;
        pos++;
        one >>= 1;
    }

    /* If we reached this point, there is a bug in the algorithm, since
     * the case of no match is handled as a special case before. */
A
antirez 已提交
177
    serverPanic("End of redisBitpos() reached.");
A
antirez 已提交
178
    return 0; /* Just to avoid warnings. */
A
antirez 已提交
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
/* The following set.*Bitfield and get.*Bitfield functions implement setting
 * and getting arbitrary size (up to 64 bits) signed and unsigned integers
 * at arbitrary positions into a bitmap.
 *
 * The representation considers the bitmap as having the bit number 0 to be
 * the most significant bit of the first byte, and so forth, so for example
 * setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap
 * previously set to all zeroes, will produce the following representation:
 *
 * +--------+--------+
 * |00000001|01110000|
 * +--------+--------+
 *
 * When offsets and integer sizes are aligned to bytes boundaries, this is the
 * same as big endian, however when such alignment does not exist, its important
 * to also understand how the bits inside a byte are ordered.
 *
 * Note that this format follows the same convention as SETBIT and related
 * commands.
 */

void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {
    uint64_t byte, bit, byteval, bitval, j;

    for (j = 0; j < bits; j++) {
        bitval = (value & (1<<(bits-1-j))) != 0;
        byte = offset >> 3;
        bit = 7 - (offset & 0x7);
        byteval = p[byte];
        byteval &= ~(1 << bit);
        byteval |= bitval << bit;
        p[byte] = byteval & 0xff;
        offset++;
    }
}

void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {
    uint64_t uv;

    if (value >= 0)
        uv = value;
    else
        uv = UINT64_MAX + value + 1;
    setUnsignedBitfield(p,offset,bits,uv);
}

uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
    uint64_t byte, bit, byteval, bitval, j, value = 0;

    for (j = 0; j < bits; j++) {
        byte = offset >> 3;
        bit = 7 - (offset & 0x7);
        byteval = p[byte];
        bitval = (byteval >> bit) & 1;
        value = (value<<1) | bitval;
        offset++;
    }
    return value;
}

int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
    int64_t value = getUnsignedBitfield(p,offset,bits);
    /* If the top significant bit is 1, propagate it to all the
     * higher bits for two complement representation of signed
     * integers. */
    if (value & (1 << (bits-1)))
        value |= ((uint64_t)-1) << bits;
    return value;
}

/* The following two functions detect overflow of a value in the context
 * of storing it as an unsigned or signed integer with the specified
 * number of bits. The functions both take the value and a possible increment.
 * If no overflow could happen and the value+increment fit inside the limits,
 * then zero is returned, otherwise in case of overflow, 1 is returned,
 * otherwise in case of underflow, -1 is returned.
 *
 * When non-zero is returned (oferflow or underflow), if not NULL, *limit is
 * set to the value the operation should result when an overflow happens,
 * depending on the specified overflow semantics:
 *
 * For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that
 * you can store in that integer. when -1 is returned, *limit is set to the
 * minimum value that an integer of that size can represent.
 *
 * For BFOVERFLOW_WRAP *limit is set by performing the operation in order to
 * "wrap" around towards zero for unsigned integers, or towards the most
 * negative number that is possible to represent for signed integers. */

#define BFOVERFLOW_WRAP 0
#define BFOVERFLOW_SAT 1
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */

int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {
    uint64_t max = (bits == 64) ? UINT64_MAX : ((1<<bits)-1);
    int64_t maxincr = max-value;
    int64_t minincr = -value;

    if (value > max || (incr > 0 && incr > maxincr)) {
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = max;
            }
        }
        return 1;
    } else if (incr < 0 && incr < minincr) {
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = 0;
            }
        }
        return -1;
    }
    return 0;

handle_wrap:
    {
        uint64_t mask = ((int64_t)-1) << bits;
        uint64_t res = value+incr;

        res &= ~mask;
        *limit = res;
    }
    return 1;
}

int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {
    int64_t max = (bits == 64) ? INT64_MAX : ((1<<(bits-1))-1);
    int64_t min = (-max)-1;

    /* Note that maxincr and minincr could overflow, but we use the values
     * only after checking 'value' range, so when we use it no overflow
     * happens. */
    int64_t maxincr = max-value;
    int64_t minincr = min-value;

321 322
    if (value > max || (bits == 64 && value >= 0 && incr > 0 && incr > maxincr)
            || (bits < 64 && incr > 0 && incr > maxincr)) {
323 324 325 326 327 328 329 330
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = max;
            }
        }
        return 1;
331 332
    } else if (value < min || (bits == 64 && value < 0 && incr < 0 && incr < minincr)
            || (bits < 64 && incr < 0 && incr < minincr)) {
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        if (limit) {
            if (owtype == BFOVERFLOW_WRAP) {
                goto handle_wrap;
            } else if (owtype == BFOVERFLOW_SAT) {
                *limit = min;
            }
        }
        return -1;
    }
    return 0;

handle_wrap:
    {
        uint64_t mask = ((int64_t)-1) << bits;
        uint64_t msb = (uint64_t)1 << (bits-1);
        uint64_t a = value, b = incr, c;
        c = a+b; /* Perform addition as unsigned so that's defined. */

        /* If the sign bit is set, propagate to all the higher order
         * bits, to cap the negative value. If it's clear, mask to
         * the positive integer limit. */
        if (c & msb) {
            c |= mask;
        } else {
            c &= ~mask;
        }
        *limit = c;
    }
    return 1;
}

/* Debugging function. Just show bits in the specified bitmap. Not used
 * but here for not having to rewrite it when debugging is needed. */
void printBits(unsigned char *p, unsigned long count) {
    unsigned long j, i, byte;

    for (j = 0; j < count; j++) {
        byte = p[j];
        for (i = 0x80; i > 0; i /= 2)
            printf("%c", (byte & i) ? '1' : '0');
        printf("|");
    }
    printf("\n");
}

A
antirez 已提交
378 379 380 381 382 383 384 385 386
/* -----------------------------------------------------------------------------
 * Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.
 * -------------------------------------------------------------------------- */

#define BITOP_AND   0
#define BITOP_OR    1
#define BITOP_XOR   2
#define BITOP_NOT   3

387 388 389 390 391 392
#define BITFIELDOP_GET 0
#define BITFIELDOP_SET 1
#define BITFIELDOP_INCRBY 2

/* This helper function used by GETBIT / SETBIT parses the bit offset argument
 * making sure an error is returned if it is negative or if it overflows
393 394 395 396 397 398
 * Redis 512 MB limit for the string value.
 *
 * If the 'hash' argument is true, and 'bits is positive, then the command
 * will also parse bit offsets prefixed by "#". In such a case the offset
 * is multiplied by 'bits'. This is useful for the BITFIELD command. */
int getBitOffsetFromArgument(client *c, robj *o, size_t *offset, int hash, int bits) {
399 400
    long long loffset;
    char *err = "bit offset is not an integer or out of range";
401 402
    char *p = o->ptr;
    size_t plen = sdslen(p);
A
antirez 已提交
403
    int usehash = 0;
404 405

    /* Handle #<offset> form. */
A
antirez 已提交
406
    if (p[0] == '#' && hash && bits > 0) usehash = 1;
407

A
antirez 已提交
408
    if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {
409
        addReplyError(c,err);
410
        return C_ERR;
411 412 413
    }

    /* Adjust the offset by 'bits' for #<offset> form. */
A
antirez 已提交
414
    if (usehash) loffset *= bits;
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    /* Limit offset to 512MB in bytes */
    if ((loffset < 0) || ((unsigned long long)loffset >> 3) >= (512*1024*1024))
    {
        addReplyError(c,err);
        return C_ERR;
    }

    *offset = (size_t)loffset;
    return C_OK;
}

/* This helper function for BITFIELD parses a bitfield type in the form
 * <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and
 * the bits is a value between 1 and 64. However 64 bits unsigned integers
 * are reported as an error because of current limitations of Redis protocol
 * to return unsigned integer values greater than INT64_MAX.
 *
 * On error C_ERR is returned and an error is sent to the client. */
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {
    char *p = o->ptr;
    char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";
    long long llbits;

    if (p[0] == 'i') {
        *sign = 1;
    } else if (p[0] == 'u') {
        *sign = 0;
    } else {
        addReplyError(c,err);
        return C_ERR;
    }

    if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||
        llbits < 1 ||
450 451
        (*sign == 1 && llbits > 64) ||
        (*sign == 0 && llbits > 63))
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    {
        addReplyError(c,err);
        return C_ERR;
    }
    *bits = llbits;
    return C_OK;
}

/* This is an helper function for commands implementations that need to write
 * bits to a string object. The command creates or pad with zeroes the string
 * so that the 'maxbit' bit can be addressed. The object is finally
 * returned. Otherwise if the key holds a wrong type NULL is returned and
 * an error is sent to the client. */
robj *lookupStringForBitCommand(client *c, size_t maxbit) {
    size_t byte = maxbit >> 3;
    robj *o = lookupKeyWrite(c->db,c->argv[1]);

    if (o == NULL) {
        o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));
        dbAdd(c->db,c->argv[1],o);
    } else {
        if (checkType(c,o,OBJ_STRING)) return NULL;
        o = dbUnshareStringValue(c->db,c->argv[1],o);
        o->ptr = sdsgrowzero(o->ptr,byte+1);
    }
    return o;
}

480
/* SETBIT key offset bitvalue */
481
void setbitCommand(client *c) {
482 483 484
    robj *o;
    char *err = "bit is not an integer or out of range";
    size_t bitoffset;
485
    ssize_t byte, bit;
486 487 488
    int byteval, bitval;
    long on;

489
    if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
490 491
        return;

492
    if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)
493 494 495 496 497 498 499 500
        return;

    /* Bits can only be set or cleared... */
    if (on & ~1) {
        addReplyError(c,err);
        return;
    }

501
    if ((o = lookupStringForBitCommand(c,bitoffset)) == NULL) return;
502 503

    /* Get current values */
504
    byte = bitoffset >> 3;
A
antirez 已提交
505
    byteval = ((uint8_t*)o->ptr)[byte];
506 507 508 509 510 511
    bit = 7 - (bitoffset & 0x7);
    bitval = byteval & (1 << bit);

    /* Update byte with new bit value and return original value */
    byteval &= ~(1 << bit);
    byteval |= ((on & 0x1) << bit);
A
antirez 已提交
512
    ((uint8_t*)o->ptr)[byte] = byteval;
513
    signalModifiedKey(c->db,c->argv[1]);
A
antirez 已提交
514
    notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
515 516 517 518 519
    server.dirty++;
    addReply(c, bitval ? shared.cone : shared.czero);
}

/* GETBIT key offset */
520
void getbitCommand(client *c) {
521 522 523 524 525 526
    robj *o;
    char llbuf[32];
    size_t bitoffset;
    size_t byte, bit;
    size_t bitval = 0;

527
    if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
528 529 530
        return;

    if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
531
        checkType(c,o,OBJ_STRING)) return;
532 533 534

    byte = bitoffset >> 3;
    bit = 7 - (bitoffset & 0x7);
535
    if (sdsEncodedObject(o)) {
536
        if (byte < sdslen(o->ptr))
A
antirez 已提交
537
            bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit);
538 539 540
    } else {
        if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr))
            bitval = llbuf[byte] & (1 << bit);
541 542 543 544 545 546
    }

    addReply(c, bitval ? shared.cone : shared.czero);
}

/* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */
547
void bitopCommand(client *c) {
548 549
    char *opname = c->argv[1]->ptr;
    robj *o, *targetkey = c->argv[2];
550
    unsigned long op, j, numkeys;
G
guiquanz 已提交
551
    robj **objects;      /* Array of source objects. */
552
    unsigned char **src; /* Array of source strings pointers. */
553 554 555
    unsigned long *len, maxlen = 0; /* Array of length of src strings,
                                       and max len. */
    unsigned long minlen = 0;    /* Min len among the input keys. */
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    unsigned char *res = NULL; /* Resulting string. */

    /* Parse the operation name. */
    if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and"))
        op = BITOP_AND;
    else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or"))
        op = BITOP_OR;
    else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor"))
        op = BITOP_XOR;
    else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not"))
        op = BITOP_NOT;
    else {
        addReply(c,shared.syntaxerr);
        return;
    }

    /* Sanity check: NOT accepts only a single key argument. */
    if (op == BITOP_NOT && c->argc != 4) {
        addReplyError(c,"BITOP NOT must be called with a single source key.");
        return;
    }

    /* Lookup keys, and store pointers to the string objects into an array. */
    numkeys = c->argc - 3;
    src = zmalloc(sizeof(unsigned char*) * numkeys);
    len = zmalloc(sizeof(long) * numkeys);
582
    objects = zmalloc(sizeof(robj*) * numkeys);
583 584 585 586
    for (j = 0; j < numkeys; j++) {
        o = lookupKeyRead(c->db,c->argv[j+3]);
        /* Handle non-existing keys as empty strings. */
        if (o == NULL) {
587
            objects[j] = NULL;
588 589
            src[j] = NULL;
            len[j] = 0;
590
            minlen = 0;
591 592 593
            continue;
        }
        /* Return an error if one of the keys is not a string. */
594
        if (checkType(c,o,OBJ_STRING)) {
595 596 597 598
            unsigned long i;
            for (i = 0; i < j; i++) {
                if (objects[i])
                    decrRefCount(objects[i]);
599
            }
600 601
            zfree(src);
            zfree(len);
602
            zfree(objects);
603 604
            return;
        }
605 606 607
        objects[j] = getDecodedObject(o);
        src[j] = objects[j]->ptr;
        len[j] = sdslen(objects[j]->ptr);
608
        if (len[j] > maxlen) maxlen = len[j];
A
antirez 已提交
609
        if (j == 0 || len[j] < minlen) minlen = len[j];
610 611 612 613 614 615
    }

    /* Compute the bit operation, if at least one string is not empty. */
    if (maxlen) {
        res = (unsigned char*) sdsnewlen(NULL,maxlen);
        unsigned char output, byte;
616
        unsigned long i;
617

A
antirez 已提交
618 619 620 621
        /* Fast path: as far as we have data for all the input bitmaps we
         * can take a fast path that performs much better than the
         * vanilla algorithm. */
        j = 0;
622
        if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) {
A
antirez 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
            unsigned long *lp[16];
            unsigned long *lres = (unsigned long*) res;

            /* Note: sds pointer is always aligned to 8 byte boundary. */
            memcpy(lp,src,sizeof(unsigned long*)*numkeys);
            memcpy(res,src[0],minlen);

            /* Different branches per different operations for speed (sorry). */
            if (op == BITOP_AND) {
                while(minlen >= sizeof(unsigned long)*4) {
                    for (i = 1; i < numkeys; i++) {
                        lres[0] &= lp[i][0];
                        lres[1] &= lp[i][1];
                        lres[2] &= lp[i][2];
                        lres[3] &= lp[i][3];
                        lp[i]+=4;
                    }
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            } else if (op == BITOP_OR) {
                while(minlen >= sizeof(unsigned long)*4) {
                    for (i = 1; i < numkeys; i++) {
                        lres[0] |= lp[i][0];
                        lres[1] |= lp[i][1];
                        lres[2] |= lp[i][2];
                        lres[3] |= lp[i][3];
                        lp[i]+=4;
                    }
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            } else if (op == BITOP_XOR) {
                while(minlen >= sizeof(unsigned long)*4) {
                    for (i = 1; i < numkeys; i++) {
                        lres[0] ^= lp[i][0];
                        lres[1] ^= lp[i][1];
                        lres[2] ^= lp[i][2];
                        lres[3] ^= lp[i][3];
                        lp[i]+=4;
                    }
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            } else if (op == BITOP_NOT) {
                while(minlen >= sizeof(unsigned long)*4) {
                    lres[0] = ~lres[0];
                    lres[1] = ~lres[1];
                    lres[2] = ~lres[2];
                    lres[3] = ~lres[3];
                    lres+=4;
                    j += sizeof(unsigned long)*4;
                    minlen -= sizeof(unsigned long)*4;
                }
            }
        }

        /* j is set to the next byte to process by the previous loop. */
        for (; j < maxlen; j++) {
685 686 687 688 689 690 691 692 693 694 695 696 697
            output = (len[0] <= j) ? 0 : src[0][j];
            if (op == BITOP_NOT) output = ~output;
            for (i = 1; i < numkeys; i++) {
                byte = (len[i] <= j) ? 0 : src[i][j];
                switch(op) {
                case BITOP_AND: output &= byte; break;
                case BITOP_OR:  output |= byte; break;
                case BITOP_XOR: output ^= byte; break;
                }
            }
            res[j] = output;
        }
    }
698 699 700 701
    for (j = 0; j < numkeys; j++) {
        if (objects[j])
            decrRefCount(objects[j]);
    }
702 703
    zfree(src);
    zfree(len);
704
    zfree(objects);
705 706 707

    /* Store the computed value into the target key */
    if (maxlen) {
708
        o = createObject(OBJ_STRING,res);
709
        setKey(c->db,targetkey,o);
A
antirez 已提交
710
        notifyKeyspaceEvent(NOTIFY_STRING,"set",targetkey,c->db->id);
711 712 713
        decrRefCount(o);
    } else if (dbDelete(c->db,targetkey)) {
        signalModifiedKey(c->db,targetkey);
A
antirez 已提交
714
        notifyKeyspaceEvent(NOTIFY_GENERIC,"del",targetkey,c->db->id);
715 716 717 718 719 720
    }
    server.dirty++;
    addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */
}

/* BITCOUNT key [start end] */
721
void bitcountCommand(client *c) {
722
    robj *o;
H
Haruto Otake 已提交
723
    long start, end, strlen;
724 725 726 727 728
    unsigned char *p;
    char llbuf[32];

    /* Lookup, check for type, and return 0 for non existing keys. */
    if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
729
        checkType(c,o,OBJ_STRING)) return;
730 731 732

    /* Set the 'p' pointer to the string, that can be just a stack allocated
     * array if our string was integer encoded. */
733
    if (o->encoding == OBJ_ENCODING_INT) {
734 735 736 737 738 739 740 741 742
        p = (unsigned char*) llbuf;
        strlen = ll2string(llbuf,sizeof(llbuf),(long)o->ptr);
    } else {
        p = (unsigned char*) o->ptr;
        strlen = sdslen(o->ptr);
    }

    /* Parse start/end range if any. */
    if (c->argc == 4) {
743
        if (getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK)
744
            return;
745
        if (getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK)
746 747 748 749 750 751
            return;
        /* Convert negative indexes */
        if (start < 0) start = strlen+start;
        if (end < 0) end = strlen+end;
        if (start < 0) start = 0;
        if (end < 0) end = 0;
H
Haruto Otake 已提交
752
        if (end >= strlen) end = strlen-1;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    } else if (c->argc == 2) {
        /* The whole string. */
        start = 0;
        end = strlen-1;
    } else {
        /* Syntax error. */
        addReply(c,shared.syntaxerr);
        return;
    }

    /* Precondition: end >= 0 && end < strlen, so the only condition where
     * zero can be returned is: start > end. */
    if (start > end) {
        addReply(c,shared.czero);
    } else {
A
antirez 已提交
768
        long bytes = end-start+1;
769

770
        addReplyLongLong(c,redisPopcount(p+start,bytes));
771 772
    }
}
A
antirez 已提交
773

774
/* BITPOS key bit [start [end]] */
775
void bitposCommand(client *c) {
A
antirez 已提交
776 777 778 779
    robj *o;
    long bit, start, end, strlen;
    unsigned char *p;
    char llbuf[32];
780
    int end_given = 0;
A
antirez 已提交
781 782 783

    /* Parse the bit argument to understand what we are looking for, set
     * or clear bits. */
784
    if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL) != C_OK)
A
antirez 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797
        return;
    if (bit != 0 && bit != 1) {
        addReplyError(c, "The bit argument must be 1 or 0.");
        return;
    }

    /* If the key does not exist, from our point of view it is an infinite
     * array of 0 bits. If the user is looking for the fist clear bit return 0,
     * If the user is looking for the first set bit, return -1. */
    if ((o = lookupKeyRead(c->db,c->argv[1])) == NULL) {
        addReplyLongLong(c, bit ? -1 : 0);
        return;
    }
798
    if (checkType(c,o,OBJ_STRING)) return;
A
antirez 已提交
799 800 801

    /* Set the 'p' pointer to the string, that can be just a stack allocated
     * array if our string was integer encoded. */
802
    if (o->encoding == OBJ_ENCODING_INT) {
A
antirez 已提交
803 804 805 806 807 808 809 810
        p = (unsigned char*) llbuf;
        strlen = ll2string(llbuf,sizeof(llbuf),(long)o->ptr);
    } else {
        p = (unsigned char*) o->ptr;
        strlen = sdslen(o->ptr);
    }

    /* Parse start/end range if any. */
811
    if (c->argc == 4 || c->argc == 5) {
812
        if (getLongFromObjectOrReply(c,c->argv[3],&start,NULL) != C_OK)
A
antirez 已提交
813
            return;
814
        if (c->argc == 5) {
815
            if (getLongFromObjectOrReply(c,c->argv[4],&end,NULL) != C_OK)
816 817 818 819 820
                return;
            end_given = 1;
        } else {
            end = strlen-1;
        }
A
antirez 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        /* Convert negative indexes */
        if (start < 0) start = strlen+start;
        if (end < 0) end = strlen+end;
        if (start < 0) start = 0;
        if (end < 0) end = 0;
        if (end >= strlen) end = strlen-1;
    } else if (c->argc == 3) {
        /* The whole string. */
        start = 0;
        end = strlen-1;
    } else {
        /* Syntax error. */
        addReply(c,shared.syntaxerr);
        return;
    }

    /* For empty ranges (start > end) we return -1 as an empty range does
     * not contain a 0 nor a 1. */
    if (start > end) {
        addReplyLongLong(c, -1);
    } else {
        long bytes = end-start+1;
        long pos = redisBitpos(p+start,bytes,bit);

845 846 847
        /* If we are looking for clear bits, and the user specified an exact
         * range with start-end, we can't consider the right of the range as
         * zero padded (as we do when no explicit end is given).
A
antirez 已提交
848
         *
849
         * So if redisBitpos() returns the first bit outside the range,
A
antirez 已提交
850 851
         * we return -1 to the caller, to mean, in the specified range there
         * is not a single "0" bit. */
852
        if (end_given && bit == 0 && pos == bytes*8) {
A
antirez 已提交
853 854 855 856 857 858 859
            addReplyLongLong(c,-1);
            return;
        }
        if (pos != -1) pos += start*8; /* Adjust for the bytes we skipped. */
        addReplyLongLong(c,pos);
    }
}
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

/* BITFIELD key subcommmand-1 arg ... subcommand-2 arg ... subcommand-N ...
 *
 * Supported subcommands:
 *
 * GET <type> <offset>
 * SET <type> <offset> <value>
 * INCRBY <type> <offset> <increment>
 * OVERFLOW [WRAP|SAT|FAIL]
 */

struct bitfieldOp {
    uint64_t offset;    /* Bitfield offset. */
    int64_t i64;        /* Increment amount (INCRBY) or SET value */
    int opcode;         /* Operation id. */
    int owtype;         /* Overflow type to use. */
    int bits;           /* Integer bitfield bits width. */
    int sign;           /* True if signed, otherwise unsigned op. */
};

void bitfieldCommand(client *c) {
    robj *o;
    size_t bitoffset;
    int j, numops = 0, changes = 0;
    struct bitfieldOp *ops = NULL; /* Array of ops to execute at end. */
    int owtype = BFOVERFLOW_WRAP; /* Overflow type. */

    for (j = 2; j < c->argc; j++) {
        int remargs = c->argc-j-1; /* Remaining args other than current. */
        char *subcmd = c->argv[j]->ptr; /* Current command name. */
        int opcode; /* Current operation code. */
        long long i64 = 0;  /* Signed SET value. */
        int sign = 0; /* Signed or unsigned type? */
        int bits = 0; /* Bitfield width in bits. */

        if (!strcasecmp(subcmd,"get") && remargs >= 2)
            opcode = BITFIELDOP_GET;
        else if (!strcasecmp(subcmd,"set") && remargs >= 3)
            opcode = BITFIELDOP_SET;
        else if (!strcasecmp(subcmd,"incrby") && remargs >= 3)
            opcode = BITFIELDOP_INCRBY;
        else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) {
            char *owtypename = c->argv[j+1]->ptr;
            j++;
            if (!strcasecmp(owtypename,"wrap"))
                owtype = BFOVERFLOW_WRAP;
            else if (!strcasecmp(owtypename,"sat"))
                owtype = BFOVERFLOW_SAT;
            else if (!strcasecmp(owtypename,"fail"))
                owtype = BFOVERFLOW_FAIL;
            else {
                addReplyError(c,"Invalid OVERFLOW type specified");
                zfree(ops);
                return;
            }
            continue;
        } else {
            addReply(c,shared.syntaxerr);
            zfree(ops);
            return;
        }

        /* Get the type and offset arguments, common to all the ops. */
        if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK) {
            zfree(ops);
            return;
        }

928
        if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK){
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
            zfree(ops);
            return;
        }

        /* INCRBY and SET require another argument. */
        if (opcode != BITFIELDOP_GET) {
            if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL) != C_OK){
                zfree(ops);
                return;
            }
        }

        /* Populate the array of operations we'll process. */
        ops = zrealloc(ops,sizeof(*ops)*(numops+1));
        ops[numops].offset = bitoffset;
        ops[numops].i64 = i64;
        ops[numops].opcode = opcode;
        ops[numops].owtype = owtype;
        ops[numops].bits = bits;
        ops[numops].sign = sign;
        numops++;

        j += 3 - (opcode == BITFIELDOP_GET);
    }

    addReplyMultiBulkLen(c,numops);

    /* Actually process the operations. */
    for (j = 0; j < numops; j++) {
        struct bitfieldOp *thisop = ops+j;

        /* Execute the operation. */
        if (thisop->opcode == BITFIELDOP_SET ||
            thisop->opcode == BITFIELDOP_INCRBY)
        {
            /* SET and INCRBY: We handle both with the same code path
             * for simplicity. SET return value is the previous value so
             * we need fetch & store as well. */

968 969
            if ((o = lookupStringForBitCommand(c,thisop->offset + thisop->bits))
                    == NULL) return;
970

971 972 973
            /* We need two different but very similar code paths for signed
             * and unsigned operations, since the set of functions to get/set
             * the integers and the used variables types are different. */
974
            if (thisop->sign) {
975
                int64_t oldval, newval, wrapped, retval;
976 977 978 979 980 981 982 983 984 985
                int overflow;

                oldval = getSignedBitfield(o->ptr,thisop->offset,
                        thisop->bits);

                if (thisop->opcode == BITFIELDOP_INCRBY) {
                    newval = oldval + thisop->i64;
                    overflow = checkSignedBitfieldOverflow(oldval,
                            thisop->i64,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
986
                    retval = newval;
987 988 989 990 991
                } else {
                    newval = thisop->i64;
                    overflow = checkSignedBitfieldOverflow(newval,
                            0,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
992
                    retval = oldval;
993
                }
994 995 996

                /* On overflow of type is "FAIL", don't write and return
                 * NULL to signal the condition. */
997
                if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
998
                    addReplyLongLong(c,retval);
999 1000
                    setSignedBitfield(o->ptr,thisop->offset,
                                      thisop->bits,newval);
1001 1002
                } else {
                    addReply(c,shared.nullbulk);
1003 1004
                }
            } else {
1005
                uint64_t oldval, newval, wrapped, retval;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
                int overflow;

                oldval = getUnsignedBitfield(o->ptr,thisop->offset,
                        thisop->bits);

                if (thisop->opcode == BITFIELDOP_INCRBY) {
                    newval = oldval + thisop->i64;
                    overflow = checkUnsignedBitfieldOverflow(oldval,
                            thisop->i64,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
1016
                    retval = newval;
1017 1018 1019 1020 1021
                } else {
                    newval = thisop->i64;
                    overflow = checkUnsignedBitfieldOverflow(newval,
                            0,thisop->bits,thisop->owtype,&wrapped);
                    if (overflow) newval = wrapped;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
                    retval = oldval;
                }
                /* On overflow of type is "FAIL", don't write and return
                 * NULL to signal the condition. */
                if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
                    addReplyLongLong(c,retval);
                    setUnsignedBitfield(o->ptr,thisop->offset,
                                        thisop->bits,newval);
                } else {
                    addReply(c,shared.nullbulk);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
                }
            }
            changes++;
        } else {
            /* GET */
            o = lookupKeyRead(c->db,c->argv[1]);
            size_t olen = (o == NULL) ? 0 : sdslen(o->ptr);
            unsigned char buf[9];

            /* For GET we use a trick: before executing the operation
             * copy up to 9 bytes to a local buffer, so that we can easily
             * execute up to 64 bit operations that are at actual string
             * object boundaries. */
            memset(buf,0,9);
            unsigned char *src = o ? o->ptr : NULL;
            int i;
            size_t byte = thisop->offset >> 3;
            for (i = 0; i < 9; i++) {
                if (src == NULL || i+byte >= olen) break;
                buf[i] = src[i+byte];
            }

            /* Now operate on the copied buffer which is guaranteed
             * to be zero-padded. */
            if (thisop->sign) {
                int64_t val = getSignedBitfield(buf,thisop->offset-(byte*8),
                                            thisop->bits);
                addReplyLongLong(c,val);
            } else {
                uint64_t val = getUnsignedBitfield(buf,thisop->offset-(byte*8),
                                            thisop->bits);
                addReplyLongLong(c,val);
            }
        }
    }

    if (changes) {
        signalModifiedKey(c->db,c->argv[1]);
        notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
        server.dirty += changes;
    }
    zfree(ops);
}