test_functional.py 23.8 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8 9
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools
10
from functools import partial
11 12 13

import numpy as np
import pytest
14
from utils import opr_test
15

16
import megengine.core.ops.builtin as builtin
17 18
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
M
Megvii Engine Team 已提交
19
from megengine import Parameter, Tensor, is_cuda_available, tensor
20
from megengine.core._trace_option import use_symbolic_shape
21
from megengine.core.autodiff.grad import Grad
22
from megengine.core.tensor.utils import make_shape_tuple
23
from megengine.distributed.helper import get_device_count_by_fork
24
from megengine.jit import trace
25 26


27 28 29 30 31 32 33 34 35 36 37 38 39
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    cases = [
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
    ]
40
    opr_test(cases, F.where, ref_fn=np.where, test_trace=False)
41 42 43 44 45 46 47 48 49 50 51 52 53

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

    cases = [
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
    ]
54
    opr_test(cases, F.where, ref_fn=np.where, test_trace=False)
55 56


57 58 59 60 61 62 63
def test_dropout():
    data = tensor(np.ones(10, dtype=np.float32))
    out = F.dropout(data, 1.0 / 3.0, training=False)

    assert out.numpy().sum() >= 0.0


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def test_matinv():
    shape1 = (5, 5)
    shape2 = (3, 9, 9)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")

    cases = [
        {"input": data1},
        {"input": data2},
    ]

    opr_test(
        cases,
        F.matinv,
        compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-5),
        ref_fn=np.linalg.inv,
    )


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
101 102 103 104 105
    shape1 = (2,)
    shape2 = (batch_size, 2, 3)
    shape3 = (batch_size, 3, 4)
    shape4 = (batch_size, 10, 4, 2)
    shape5 = (batch_size, 10, 2, 4)
106 107 108
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
109 110
    data4 = np.random.random(shape4).astype("float32")
    data5 = np.random.random(shape5).astype("float32")
111

112 113 114 115 116 117
    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
        {"input": [data4, data5]},
    ]
118
    opr_test(cases, F.matmul, ref_fn=np.matmul)
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    opr_test(
        [{"input": [data1, data4]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)),
        transpose_b=True,
    )

    opr_test(
        [{"input": [data3, data2]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)),
        transpose_a=True,
        transpose_b=True,
    )

135

136 137 138 139
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

140 141
        out = F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR")
        out2 = F.vision.interpolate(inp, 4, mode="LINEAR")
142

143
        np.testing.assert_allclose(
144 145
            out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )
146
        np.testing.assert_allclose(
147 148 149 150 151 152
            out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

153 154
        out = F.vision.interpolate(inp, [4, 4])
        out2 = F.vision.interpolate(inp, scale_factor=2.0)
155

156
        np.testing.assert_allclose(out.numpy(), out2.numpy())
157 158 159 160

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

161 162
        out = F.vision.interpolate(inp, [4, 4], align_corners=True)
        out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True)
163

164
        np.testing.assert_allclose(out.numpy(), out2.numpy())
165 166 167 168 169

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
170
            F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR")
171 172 173 174 175

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
176
            F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR")
177 178 179 180 181 182 183 184 185

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
    inappropriate_scale_linear_interpolate()


def _save_to(self, name="grad"):
186
    def callback(grad):
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))

    output_shape = (7, 7)
209
    out_feat = F.vision.roi_align(
210 211 212 213 214 215 216 217
        inp_feat,
        rois,
        output_shape=output_shape,
        mode="average",
        spatial_scale=1.0 / 4,
        sample_points=2,
        aligned=True,
    )
218 219 220 221 222
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
223 224

    grad(out_feat, tensor(F.ones_like(out_feat)))
225
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
226 227 228 229 230 231


def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))
    output_shape = (7, 7)
232
    out_feat = F.vision.roi_pooling(
233 234
        inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
    )
235 236 237 238 239
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
240 241

    grad(out_feat, tensor(F.ones_like(out_feat)))
242
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
243 244


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_avg_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_max_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


305 306 307 308
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
309

310
        np.testing.assert_allclose(
311 312
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
313

314 315 316 317 318
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
319

320 321
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
322

323
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
324

325 326
    onehot_low_dimension()
    onehot_high_dimension()
327 328


329
def test_interpolate_fastpath():
330 331 332 333 334 335 336 337 338
    # check shape
    test_cases = [
        [(1, 1, 10, 10), (5, 5)],
        [(1, 3, 10, 10), (20, 20)],
        [(10, 1, 10, 10), (1, 1)],
        [(10, 10, 1, 1), (10, 10)],
    ]
    for inp_shape, target_shape in test_cases:
        x = tensor(np.random.randn(*inp_shape), dtype=np.float32)
339
        out = F.vision.interpolate(x, target_shape, mode="BILINEAR")
340 341 342 343 344
        assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1]
        assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1]

    # check value
    x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32)
345
    out = F.vision.interpolate(x, (15, 5), mode="BILINEAR")
346 347 348 349
    np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32))

    np_x = np.arange(32)
    x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1)
350
    out = F.vision.interpolate(x, (1, 1), mode="BILINEAR")
351 352 353
    np.testing.assert_equal(out.item(), np_x.mean())


354 355 356 357 358 359 360 361 362 363
def test_warp_perspective():
    inp_shape = (1, 1, 4, 4)
    x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
364
    outp = F.vision.warp_perspective(x, M, (2, 2))
365 366 367 368 369
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32)
    )


370 371 372 373
def test_warp_affine():
    inp_shape = (1, 3, 3, 3)
    x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
    weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]]
374
    outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP")
375 376 377 378 379 380 381 382 383 384 385 386 387
    res = np.array(
        [
            [
                [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]],
                [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]],
            ]
        ],
        dtype=np.float32,
    )
    if not is_cuda_available():
        np.testing.assert_almost_equal(outp.numpy(), res, 5)


388 389 390 391 392 393 394 395 396
def test_remap():
    inp_shape = (1, 1, 4, 4)
    inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    map_xy_shape = (1, 2, 2, 2)
    map_xy = tensor(
        np.array(
            [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
        ).reshape(map_xy_shape)
    )
397
    outp = F.vision.remap(inp, map_xy)
398 399 400 401 402
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
    )


403 404 405 406 407 408 409 410 411 412
def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
413
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
414 415

    np.random.seed(123)
416
    data1 = np.random.uniform(size=data1_shape).astype(np.float32)
417 418 419 420
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
    expect1 = np.array([0.6361], dtype=np.float32)

    np.random.seed(123)
421
    data2 = np.random.uniform(size=data2_shape).astype(np.float32)
422 423 424 425 426 427 428
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
    expect2 = np.array([0.6750], dtype=np.float32)

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
429
    opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)
430

431 432 433 434 435
    cases = [
        {"input": [sigmoid(data1), label1], "output": expect1,},
        {"input": [sigmoid(data2), label2], "output": expect2,},
    ]
    opr_test(
436 437 438
        cases,
        partial(F.nn.binary_cross_entropy, with_logits=False),
        compare_fn=compare_fn,
439 440
    )

441 442 443 444 445 446 447 448 449 450 451

def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

452
    opr_test(cases, F.nn.hinge_loss)
453 454 455 456 457 458 459 460 461 462

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
463
        return F.nn.hinge_loss(pred, label, "L2")
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

    opr_test(cases, hinge_loss_with_l2_norm)


def test_nms():
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
480
    result = F.vision.nms(inp, scores=scores, iou_thresh=0.5)
481 482 483
    np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))


484 485 486
@pytest.mark.skipif(
    get_device_count_by_fork("gpu") > 0, reason="cuda does not support nchw int8"
)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
        nonlinear_mode="IDENTITY",
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
512
        w_v = np.random.normal(size=(OC, IC, KH, KW))
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
534
            var = F.transpose(var, (0, 1, 3, 4, 2))
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
            if nonlinear_mode == "RELU":
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
552
            return F.quantized.conv_bias_activation(
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
570
            result = F.transpose(result, (0, 1, 4, 2, 3))
571 572
        expected = F.flatten(expected)
        result = F.flatten(result)
573
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
574 575 576 577 578 579 580 581 582 583 584 585 586

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "RELU")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "RELU")


587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
@pytest.mark.skipif(
    get_device_count_by_fork("gpu") > 0, reason="no int8 algorithm on cuda"
)
def test_batch_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True,
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(N, OC, IC, KH, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def run_batch_conv_bias(inp, w, b):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            result = F.quantized.batch_conv_bias_activation(
                inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype,
            )
            return result.astype("float32")

        expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0]
        expected = expected.astype(out_dtype).astype("float32")
        expected = F.flatten(expected)

        result = run_batch_conv_bias(inp_int8, w_int8, b_int32)
        result = F.flatten(result)

        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)

    run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True)


640
def test_conv2d_zero_stride_numpy_array():
641 642 643 644 645 646 647 648
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


649 650 651 652 653 654 655 656 657 658
def test_conv3d_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32)
    out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1)
    out.numpy()


659 660 661 662 663 664 665 666 667 668 669 670
def test_conv1d():
    inp = tensor(np.ones((16,), dtype=np.float32).reshape(2, 2, 4))
    weight = tensor(np.ones((12,), dtype=np.float32).reshape(3, 2, 2))
    out = F.conv1d(inp, weight, None, 2, 0, 1, 1)
    np.testing.assert_equal(
        out.numpy(),
        np.array(
            [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32
        ),
    )


671 672 673 674 675 676 677 678 679 680
def test_conv3d():
    inp = tensor(np.ones((256,), dtype=np.float32).reshape(2, 2, 4, 4, 4))
    weight = tensor(np.ones((48,), dtype=np.float32).reshape(3, 2, 2, 2, 2))
    out = F.conv3d(inp, weight, None, 2, 0, 1, 1)
    print(out.numpy().shape)
    np.testing.assert_equal(
        out.numpy(), np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16
    )


681 682 683 684 685 686 687 688
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705


def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
706 707


708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724


def test_argmxx_on_inf():
    def run_argmax():
        x = F.zeros((100, 100))
        x[:] = -float("inf")
        idxs = F.argmax(x, axis=0)
        return idxs

    def run_argmin():
        x = F.zeros((100, 100))
        x[:] = float("inf")
        idxs = F.argmin(x, axis=0)
        return idxs

    assert all(run_argmax() >= 0)
    assert all(run_argmin() >= 0)
725 726


727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
def test_deformable_psroi_pooling():
    inp = np.random.random((1, 256, 64, 64)).astype("float32")
    rois = np.random.random((1, 5)).astype("float32")
    trans = np.random.random((24, 2, 7, 7)).astype("float32")

    pooled_h = 7
    pooled_w = 7
    sample_per_part = 4
    no_trans = False
    part_size = 7
    spatial_scale = 1.0 / 64
    trans_std = 0.1

    y = F.deformable_psroi_pooling(
        tensor(inp),
        tensor(rois),
        tensor(trans),
        no_trans,
        part_size,
        pooled_h,
        pooled_w,
        sample_per_part,
        spatial_scale,
        trans_std,
    )


754 755 756 757 758 759 760
def test_cvt_color():
    def rgb2gray(rgb):
        return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])

    inp = np.random.randn(3, 3, 3, 3).astype(np.float32)
    out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32)
    x = tensor(inp)
761
    y = F.vision.cvt_color(x, mode="RGB2GRAY")
762
    np.testing.assert_allclose(y.numpy(), out, atol=1e-5)
763 764 765 766 767 768 769


@pytest.mark.parametrize("val", [2, [2,], [2, 3]])
def test_ones(val):
    shp = tensor(val)
    np_shp = np.array(val)
    np.testing.assert_equal(F.ones(shp), np.ones(np_shp))
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784


def test_assert_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.00001
    z = F.utils._assert_equal(x, y)


def test_assert_not_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.1
    with pytest.raises(RuntimeError):
        z = F.utils._assert_equal(x, y)