test_functional.py 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools
10
from functools import partial
11 12 13

import numpy as np
import pytest
14
from utils import opr_test
15

16
import megengine.core.ops.builtin as builtin
17 18
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
M
Megvii Engine Team 已提交
19
from megengine import Parameter, Tensor, is_cuda_available, tensor
20
from megengine.core._trace_option import use_tensor_shape
21
from megengine.core.autodiff.grad import Grad
22
from megengine.core.tensor.utils import make_shape_tuple
23 24


25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    cases = [
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
    ]
    opr_test(cases, F.where, ref_fn=np.where)

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

    cases = [
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
    ]
    opr_test(cases, F.where, ref_fn=np.where)
53 54


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def test_dropout():
    data = tensor(np.ones(10, dtype=np.float32))
    out = F.dropout(data, 1.0 / 3.0, training=False)

    assert out.numpy().sum() >= 0.0


def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
    shape1 = (batch_size, 2, 3)
    shape2 = (batch_size, 3, 4)
    shape3 = (batch_size, 10, 4, 5)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data2, data3]}]
    for i in range(0, batch_size):

        def compare_fn(x, y):
            x.numpy()[i, ...] == y

        opr_test(
            cases,
            F.matmul,
            compare_fn=compare_fn,
            ref_fn=lambda x, y: np.matmul(x[i, ...], y[i, ...]),
        )


101 102 103 104
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

105 106
        out = F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR")
        out2 = F.nn.interpolate(inp, 4, mode="LINEAR")
107

108
        np.testing.assert_allclose(
109 110
            out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )
111
        np.testing.assert_allclose(
112 113 114 115 116 117
            out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

118 119
        out = F.nn.interpolate(inp, [4, 4])
        out2 = F.nn.interpolate(inp, scale_factor=2.0)
120

121
        np.testing.assert_allclose(out.numpy(), out2.numpy())
122 123 124 125

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

126 127
        out = F.nn.interpolate(inp, [4, 4], align_corners=True)
        out2 = F.nn.interpolate(inp, scale_factor=2.0, align_corners=True)
128

129
        np.testing.assert_allclose(out.numpy(), out2.numpy())
130 131 132 133 134

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
135
            F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR")
136 137 138 139 140

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
141
            F.nn.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR")
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
    inappropriate_scale_linear_interpolate()


def _save_to(self, name="grad"):
    def callback(tensor, grad):
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))

    output_shape = (7, 7)
174
    out_feat = F.nn.roi_align(
175 176 177 178 179 180 181 182
        inp_feat,
        rois,
        output_shape=output_shape,
        mode="average",
        spatial_scale=1.0 / 4,
        sample_points=2,
        aligned=True,
    )
183 184 185 186 187
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
188 189

    grad(out_feat, tensor(F.ones_like(out_feat)))
190
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
191 192 193 194 195 196


def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))
    output_shape = (7, 7)
197
    out_feat = F.nn.roi_pooling(
198 199
        inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
    )
200 201 202 203 204
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
205 206

    grad(out_feat, tensor(F.ones_like(out_feat)))
207
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
208 209


210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_avg_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_max_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


270 271 272 273
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
274

275
        np.testing.assert_allclose(
276 277
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
278

279 280 281 282 283
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
284

285 286
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
287

288
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
289

290 291
    onehot_low_dimension()
    onehot_high_dimension()
292 293 294 295 296 297 298 299 300 301 302 303


def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
304
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
305 306

    np.random.seed(123)
307
    data1 = np.random.uniform(size=data1_shape).astype(np.float32)
308 309 310 311
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
    expect1 = np.array([0.6361], dtype=np.float32)

    np.random.seed(123)
312
    data2 = np.random.uniform(size=data2_shape).astype(np.float32)
313 314 315 316 317 318 319
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
    expect2 = np.array([0.6750], dtype=np.float32)

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
320
    opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)
321

322 323 324 325 326
    cases = [
        {"input": [sigmoid(data1), label1], "output": expect1,},
        {"input": [sigmoid(data2), label2], "output": expect2,},
    ]
    opr_test(
327 328 329
        cases,
        partial(F.nn.binary_cross_entropy, with_logits=False),
        compare_fn=compare_fn,
330 331
    )

332 333 334 335 336 337 338 339 340 341 342

def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

343
    opr_test(cases, F.nn.hinge_loss)
344 345 346 347 348 349 350 351 352 353

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
354
        return F.nn.hinge_loss(pred, label, "L2")
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

    opr_test(cases, hinge_loss_with_l2_norm)


def test_nms():
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
371
    result = F.nn.nms(inp, scores=scores, iou_thresh=0.5)
372 373 374
    np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))


375
@pytest.mark.skip(reason="cuda does not support nchw int8")
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
        nonlinear_mode="IDENTITY",
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(OC, IC, KW, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
423
            var = F.transpose(var, (0, 1, 3, 4, 2))
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
            if nonlinear_mode == "RELU":
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
441
            return F.nn.conv_bias_activation(
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                format=format,
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
460
            result = F.transpose(result, (0, 1, 4, 2, 3))
461 462
        expected = F.flatten(expected)
        result = F.flatten(result)
463
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
464 465 466 467 468 469 470 471 472 473 474 475 476

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "RELU")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "RELU")


477 478 479 480 481 482 483 484 485
def test_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


486 487 488 489 490 491 492 493
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510


def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
511 512