- 16 10月, 2019 1 次提交
-
-
由 Yang Zhang 提交于
* Error out if fp16 is enabled and affine channel is used * Add more documentation on mixed precision training
-
- 27 8月, 2019 1 次提交
-
-
由 Yuan Gao 提交于
* add a global norm_type flag * add group norm on fpn * add gn on box head * add faster rcnn fpn 50 gn config * add mask branch norm * update configs
-
- 25 7月, 2019 1 次提交
-
-
由 Kaipeng Deng 提交于
* fix infer doc and config default * refine dataset exists * fix None proc
-
- 16 7月, 2019 1 次提交
-
-
由 Yang Zhang 提交于
* Clean up a bit * Add `__shared__` annotation for shared variables between modules * Dedup `num_classes` configurations * Document `__shared__` usage * Remove some unused variable * Improve docstring and add comments for `__shared__`
-
- 28 6月, 2019 2 次提交
-
-
由 qingqing01 提交于
* Rename object_detection to PaddleDetection * Small fix for doc
-
由 Yang Zhang 提交于
* Clean up config files - reorder: batch_size -> data_set -> sample_transforms -> batch_transforms -> worker -> other - unify bool values, lower case true/false - remove `null` values - remove `shuffle` settings, covered by default values * Update ResNet50 pretrained weight url * Remove `use_padded_im_info` settings, covered by default value
-
- 27 6月, 2019 2 次提交
-
-
由 qingqing01 提交于
* Add GC in train.py by defalut and change data co dataset in configs * Update docs/INSTALL.md * Enable build_strategy.enable_inplace = True
-
由 Kaipeng Deng 提交于
* add VOC visualize * fixn ssd_mobilenet_v1_voc.yml * use default label * clean TestFeed dataset config * fix voc default label * fix format * fix as review * revert voc default * use defult label for all * enable batch size != 1
-
- 25 6月, 2019 1 次提交
-
-
由 Kaipeng Deng 提交于
* refine infer with args * remove samples * fix as review * refine code * refine args * move get_test_images to infer.py * add visualize log * fix images = [] * fix args * refine infer.py * fix yolov3_r34.yml
-
- 24 6月, 2019 1 次提交
-
-
由 qingqing01 提交于
* Unified object detection framework based on PaddlePaddle. * Include algo: Faster, Mask, FPN, Cascade, RetinaNet, Yolo v3, SSD.
-