提交 f70d33bc 编写于 作者: P peterzhang2029

refine docstring

上级 47ba3c29
...@@ -10,14 +10,14 @@ import paddle.v2 as paddle ...@@ -10,14 +10,14 @@ import paddle.v2 as paddle
def lambda_rank(input_dim, is_infer): def lambda_rank(input_dim, is_infer):
""" """
Lambda_rank is a Listwise rank model, the input data and label LambdaRank is a listwise rank model, the input data and label
must be sequences. must be sequences.
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters : parameters :
input_dim, one document's dense feature vector dimension input_dim, one document's dense feature vector dimension
Format of the dense_vector_sequence: The format of the dense_vector_sequence is as follows:
[[f, ...], [f, ...], ...], f is a float or an int number [[f, ...], [f, ...], ...], f is a float or an int number
""" """
if not is_infer: if not is_infer:
...@@ -55,7 +55,7 @@ def lambda_rank(input_dim, is_infer): ...@@ -55,7 +55,7 @@ def lambda_rank(input_dim, is_infer):
def train_lambda_rank(num_passes): def train_lambda_rank(num_passes):
# Listwise input sequence. # The input for LambdaRank is a sequence.
fill_default_train = functools.partial( fill_default_train = functools.partial(
paddle.dataset.mq2007.train, format="listwise") paddle.dataset.mq2007.train, format="listwise")
fill_default_test = functools.partial( fill_default_test = functools.partial(
...@@ -96,7 +96,7 @@ def train_lambda_rank(num_passes): ...@@ -96,7 +96,7 @@ def train_lambda_rank(num_passes):
def lambda_rank_infer(pass_id): def lambda_rank_infer(pass_id):
"""Lambda rank model inference interface. """LambdaRank model inference interface.
Parameters: Parameters:
pass_id : inference model in pass_id pass_id : inference model in pass_id
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册