Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
47ba3c29
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47ba3c29
编写于
11月 01, 2017
作者:
P
peterzhang2029
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix lambda_rank
上级
b8256825
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
29 addition
and
25 deletion
+29
-25
ltr/lambda_rank.py
ltr/lambda_rank.py
+29
-25
未找到文件。
ltr/lambda_rank.py
浏览文件 @
47ba3c29
...
...
@@ -8,25 +8,25 @@ import numpy as np
import
paddle.v2
as
paddle
def
lambda_rank
(
input_dim
):
def
lambda_rank
(
input_dim
,
is_infer
):
"""
l
ambda_rank is a Listwise rank model, the input data and label
L
ambda_rank is a Listwise rank model, the input data and label
must be sequences.
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
f
ormat of the dense_vector_sequence:
F
ormat of the dense_vector_sequence:
[[f, ...], [f, ...], ...], f is a float or an int number
"""
label
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
dense_vector_sequence
(
1
))
if
not
is_infer
:
label
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
dense_vector_sequence
(
1
))
data
=
paddle
.
layer
.
data
(
"data"
,
paddle
.
data_type
.
dense_vector_sequence
(
input_dim
))
#
hidden layer
#
Define hidden layer.
hd1
=
paddle
.
layer
.
fc
(
input
=
data
,
size
=
128
,
...
...
@@ -44,27 +44,30 @@ def lambda_rank(input_dim):
act
=
paddle
.
activation
.
Linear
(),
param_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.01
))
# evaluator
evaluator
=
paddle
.
evaluator
.
auc
(
input
=
output
,
label
=
label
)
# cost layer
cost
=
paddle
.
layer
.
lambda_cost
(
input
=
output
,
score
=
label
,
NDCG_num
=
6
,
max_sort_size
=-
1
)
return
cost
,
output
if
not
is_infer
:
# Define evaluator.
evaluator
=
paddle
.
evaluator
.
auc
(
input
=
output
,
label
=
label
)
# Define cost layer.
cost
=
paddle
.
layer
.
lambda_cost
(
input
=
output
,
score
=
label
,
NDCG_num
=
6
,
max_sort_size
=-
1
)
return
cost
,
output
return
output
def
train_lambda_rank
(
num_passes
):
#
listwise input sequence
#
Listwise input sequence.
fill_default_train
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
train
,
format
=
"listwise"
)
fill_default_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"listwise"
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
fill_default_train
,
buf_size
=
100
),
batch_size
=
32
)
test_reader
=
paddle
.
batch
(
fill_default_test
,
batch_size
=
32
)
#
mq2007 input_dim = 46, dense format
#
Training dataset: mq2007, input_dim = 46, dense format.
input_dim
=
46
cost
,
output
=
lambda_rank
(
input_dim
)
cost
,
output
=
lambda_rank
(
input_dim
,
is_infer
=
False
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
...
...
@@ -72,7 +75,7 @@ def train_lambda_rank(num_passes):
parameters
=
parameters
,
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
))
# Define end batch and end pass event handler
# Define end batch and end pass event handler
.
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
print
"Pass %d Batch %d Cost %.9f"
%
(
event
.
pass_id
,
event
.
batch_id
,
...
...
@@ -93,30 +96,31 @@ def train_lambda_rank(num_passes):
def
lambda_rank_infer
(
pass_id
):
"""
lambda_rank model inference interface
"""
Lambda rank model inference interface.
p
arameters:
P
arameters:
pass_id : inference model in pass_id
"""
print
"Begin to Infer..."
input_dim
=
46
output
=
lambda_rank
(
input_dim
)
output
=
lambda_rank
(
input_dim
,
is_infer
=
True
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
"lambda_rank_params_%d.tar.gz"
%
(
pass_id
-
1
)))
infer_query_id
=
None
infer_data
=
[]
infer_data_num
=
1
fill_default_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"listwise"
)
for
label
,
querylist
in
fill_default_test
():
infer_data
.
append
(
querylist
)
infer_data
.
append
(
[
querylist
]
)
if
len
(
infer_data
)
==
infer_data_num
:
break
#
p
redict score of infer_data document.
# Re-sort the document base on predict score
#
in descending order. then we build the ranking documents
#
P
redict score of infer_data document.
# Re-sort the document base on predict score
.
#
In descending order. then we build the ranking documents.
predicitons
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
for
i
,
score
in
enumerate
(
predicitons
):
...
...
@@ -129,7 +133,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
"--num_passes"
,
type
=
int
,
help
=
"
num of passes in train| infer pass number of model
"
)
help
=
"
The Num of passes in train| infer pass number of model.
"
)
args
=
parser
.
parse_args
()
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
if
args
.
run_type
==
"train"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录