Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e955704e
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e955704e
编写于
11月 14, 2018
作者:
T
tangwei12
提交者:
GitHub
11月 14, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#1
from seiriosPlus/add-word2vec
Add word2vec
上级
2cae57ef
7119aebf
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
71 addition
and
31 deletion
+71
-31
fluid/PaddleRec/word2vec/cluster_train.sh
fluid/PaddleRec/word2vec/cluster_train.sh
+2
-1
fluid/PaddleRec/word2vec/network_conf.py
fluid/PaddleRec/word2vec/network_conf.py
+51
-23
fluid/PaddleRec/word2vec/reader.py
fluid/PaddleRec/word2vec/reader.py
+10
-2
fluid/PaddleRec/word2vec/train.py
fluid/PaddleRec/word2vec/train.py
+8
-5
未找到文件。
fluid/PaddleRec/word2vec/cluster_train.sh
浏览文件 @
e955704e
...
...
@@ -38,4 +38,5 @@ python train.py \
--endpoints
127.0.0.1:6000,127.0.0.1:6001
\
--trainers
2
\
--trainer_id
1
\
>
trainer1.log 2>&1 &
\ No newline at end of file
>
trainer1.log 2>&1 &
fluid/PaddleRec/word2vec/network_conf.py
浏览文件 @
e955704e
import
paddle.fluid
as
fluid
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
neural network for word2vec
"""
from
__future__
import
print_function
import
math
import
numpy
as
np
import
paddle.fluid
as
fluid
def
skip_gram_word2vec
(
dict_size
,
word_frequencys
,
embedding_size
):
def
nce_layer
(
input
,
label
,
embedding_size
,
num_total_classes
,
num_neg_samples
,
sampler
,
custom_dist
,
sample_weight
):
# convert word_frequencys to tensor
nid_freq_arr
=
np
.
array
(
word_frequencys
).
astype
(
'float32'
)
nid_freq_var
=
fluid
.
layers
.
assign
(
input
=
nid_freq_arr
)
w_param_name
=
"nce_w"
b_param_name
=
"nce_b"
w_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
embedding_size
],
dtype
=
'float32'
,
name
=
w_param_name
)
b_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
1
],
dtype
=
'float32'
,
name
=
b_param_name
)
cost
=
fluid
.
layers
.
nce
(
input
=
input
,
label
=
label
,
num_total_classes
=
num_total_classes
,
sampler
=
sampler
,
custom_dist
=
nid_freq_var
,
sample_weight
=
sample_weight
,
param_attr
=
fluid
.
ParamAttr
(
name
=
w_param_name
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
b_param_name
),
num_neg_samples
=
num_neg_samples
)
return
cost
def
skip_gram_word2vec
(
dict_size
,
embedding_size
):
input_word
=
fluid
.
layers
.
data
(
name
=
"input_word"
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_word
=
fluid
.
layers
.
data
(
name
=
'predict_word'
,
shape
=
[
1
],
dtype
=
'int64'
)
data_list
=
[
input_word
,
predict_word
]
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
size
=
[
dict_size
,
embedding_size
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
dict_size
))))
predict_word
=
fluid
.
layers
.
data
(
name
=
'predict_word'
,
shape
=
[
1
],
dtype
=
'int64'
)
data_list
=
[
input_word
,
predict_word
]
w_param_name
=
"nce_w"
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
dict_size
,
embedding_size
],
dtype
=
'float32'
,
name
=
w_param_name
)
b_param_name
=
"nce_b"
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
dict_size
,
1
],
dtype
=
'float32'
,
name
=
b_param_name
)
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
dict_size
))))
cost
=
fluid
.
layers
.
nce
(
input
=
emb
,
label
=
predict_word
,
num_total_classes
=
dict_size
,
param_attr
=
fluid
.
ParamAttr
(
name
=
w_param_name
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
b_param_name
),
num_neg_samples
=
5
)
cost
=
nce_layer
(
emb
,
predict_word
,
embedding_size
,
dict_size
,
5
,
"uniform"
,
word_frequencys
,
None
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
,
data_list
fluid/PaddleRec/word2vec/reader.py
浏览文件 @
e955704e
...
...
@@ -10,13 +10,21 @@ class Word2VecReader(object):
self
.
data_path_
=
data_path
self
.
word_to_id_
=
dict
()
word_all_count
=
0
word_counts
=
[]
word_id
=
0
with
open
(
dict_path
,
'r'
)
as
f
:
for
line
in
f
:
self
.
word_to_id_
[
line
.
split
()[
0
]]
=
word_id
word
,
count
=
line
.
split
()[
0
],
int
(
line
.
split
()[
1
])
self
.
word_to_id_
[
word
]
=
word_id
word_id
+=
1
word_counts
.
append
(
count
)
word_all_count
+=
count
self
.
dict_size
=
len
(
self
.
word_to_id_
)
print
(
"dict_size = "
+
str
(
self
.
dict_size
))
self
.
word_frequencys
=
[
float
(
count
)
/
word_all_count
for
count
in
word_counts
]
print
(
"dict_size = "
+
str
(
self
.
dict_size
))
+
" word_all_count = "
+
str
(
word_all_count
)
def
get_context_words
(
self
,
words
,
idx
,
window_size
):
"""
...
...
fluid/PaddleRec/word2vec/train.py
浏览文件 @
e955704e
...
...
@@ -66,7 +66,7 @@ def parse_args():
'--role'
,
type
=
str
,
default
=
'pserver'
,
# trainer or pserver
help
=
'The
path for model to store (default: models
)'
)
help
=
'The
training role (trainer|pserver) (default: pserver
)'
)
parser
.
add_argument
(
'--endpoints'
,
type
=
str
,
...
...
@@ -76,12 +76,12 @@ def parse_args():
'--current_endpoint'
,
type
=
str
,
default
=
'127.0.0.1:6000'
,
help
=
'The
path for model to store
(default: 127.0.0.1:6000)'
)
help
=
'The
current pserver endpoint
(default: 127.0.0.1:6000)'
)
parser
.
add_argument
(
'--trainer_id'
,
type
=
int
,
default
=
0
,
help
=
'The
path for model to store (default: models
)'
)
help
=
'The
current trainer id (default: 0
)'
)
parser
.
add_argument
(
'--trainers'
,
type
=
int
,
...
...
@@ -131,8 +131,11 @@ def train():
word2vec_reader
=
reader
.
Word2VecReader
(
args
.
dict_path
,
args
.
train_data_path
)
loss
,
data_list
=
skip_gram_word2vec
(
word2vec_reader
.
dict_size
,
args
.
embedding_size
)
logger
.
info
(
"dict_size: {}"
.
format
(
word2vec_reader
.
dict_size
))
logger
.
info
(
"word_frequencys length: {}"
.
format
(
len
(
word2vec_reader
.
word_frequencys
)))
loss
,
data_list
=
skip_gram_word2vec
(
word2vec_reader
.
dict_size
,
word2vec_reader
.
word_frequencys
,
args
.
embedding_size
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录