Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f18375f8
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f18375f8
编写于
4月 22, 2020
作者:
O
overlordmax
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix code style
上级
d02f1ccc
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
65 addition
and
89 deletion
+65
-89
PaddleRec/wide_deep/README.md
PaddleRec/wide_deep/README.md
+17
-14
PaddleRec/wide_deep/args.py
PaddleRec/wide_deep/args.py
+2
-3
PaddleRec/wide_deep/create_data.sh
PaddleRec/wide_deep/create_data.sh
+1
-1
PaddleRec/wide_deep/infer.py
PaddleRec/wide_deep/infer.py
+13
-25
PaddleRec/wide_deep/infer_gpu.sh
PaddleRec/wide_deep/infer_gpu.sh
+1
-2
PaddleRec/wide_deep/net.py
PaddleRec/wide_deep/net.py
+21
-28
PaddleRec/wide_deep/train.py
PaddleRec/wide_deep/train.py
+10
-16
未找到文件。
PaddleRec/wide_deep/README.md
浏览文件 @
f18375f8
...
...
@@ -167,20 +167,23 @@ python infer.py --batch_size 40 \ #batch大小
在测试集的效果如下:
```
W0422 1
0:45:12.497740 1218
device_context.cc:237] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 9.2, Runtime API Version: 9.0
W0422 1
0:45:12.501889 1218
device_context.cc:245] device: 0, cuDNN Version: 7.3.
2020-04-22 1
0:45:13,804-INFO: batch_id: 0,batch_time: 0.00625s,acc: 0.72500,
auc: 0.92790
2020-04-22 1
0:45:13,809-INFO: batch_id: 1,batch_time: 0.00468s,acc: 0.80000,auc: 0.92321
2020-04-22 1
0:45:13,814-INFO: batch_id: 2,batch_time: 0.00442s,acc: 0.82500,auc: 0.93003
2020-04-22 1
0:45:13,819-INFO: batch_id: 3,batch_time: 0.00434s,acc: 0.75000,auc: 0.9410
8
2020-04-22 1
0:45:13,824-INFO: batch_id: 4,batch_time: 0.00438s,acc: 0.67500,auc: 0.93013
2020-04-22 1
0:45:13,829-INFO: batch_id: 5,batch_time: 0.00438s,acc: 0.80000,auc: 0.92201
W0422 1
1:44:50.891095 1573
device_context.cc:237] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 9.2, Runtime API Version: 9.0
W0422 1
1:44:50.895593 1573
device_context.cc:245] device: 0, cuDNN Version: 7.3.
2020-04-22 1
1:44:52,236-INFO: batch_id: 0, batch_time: 0.00613s, acc: 0.72500,
auc: 0.92790
2020-04-22 1
1:44:52,242-INFO: batch_id: 1, batch_time: 0.00467s, acc: 0.80000, auc: 0.93356
2020-04-22 1
1:44:52,247-INFO: batch_id: 2, batch_time: 0.00462s, acc: 0.82500, auc: 0.93372
2020-04-22 1
1:44:52,252-INFO: batch_id: 3, batch_time: 0.00445s, acc: 0.75000, auc: 0.9419
8
2020-04-22 1
1:44:52,257-INFO: batch_id: 4, batch_time: 0.00449s, acc: 0.67500, auc: 0.93222
2020-04-22 1
1:44:52,262-INFO: batch_id: 5, batch_time: 0.00444s, acc: 0.80000, auc: 0.92254
......
2020-04-22 10:45:15,914-INFO: batch_id: 403,batch_time: 0.00487s,acc: 0.80000,auc: 0.90454
2020-04-22 10:45:15,920-INFO: batch_id: 404,batch_time: 0.00505s,acc: 0.72500,auc: 0.90427
2020-04-22 10:45:15,925-INFO: batch_id: 405,batch_time: 0.00460s,acc: 0.77500,auc: 0.90405
2020-04-22 10:45:15,931-INFO: batch_id: 406,batch_time: 0.00517s,acc: 0.77500,auc: 0.90412
2020-04-22 10:45:15,936-INFO: batch_id: 407,batch_time: 0.00457s,acc: 0.00000,auc: 0.90415
2020-04-22 10:45:15,936-INFO: mean_acc:0.76195,mean_auc:0.90335
2020-04-22 11:44:54,439-INFO: batch_id: 400, batch_time: 0.00507s, acc: 0.80000, auc: 0.90650
2020-04-22 11:44:54,445-INFO: batch_id: 401, batch_time: 0.00512s, acc: 0.67500, auc: 0.90658
2020-04-22 11:44:54,452-INFO: batch_id: 402, batch_time: 0.00591s, acc: 0.72500, auc: 0.90638
2020-04-22 11:44:54,458-INFO: batch_id: 403, batch_time: 0.00518s, acc: 0.80000, auc: 0.90634
2020-04-22 11:44:54,464-INFO: batch_id: 404, batch_time: 0.00513s, acc: 0.72500, auc: 0.90619
2020-04-22 11:44:54,470-INFO: batch_id: 405, batch_time: 0.00497s, acc: 0.77500, auc: 0.90597
2020-04-22 11:44:54,476-INFO: batch_id: 406, batch_time: 0.00554s, acc: 0.77500, auc: 0.90606
2020-04-22 11:44:54,481-INFO: batch_id: 407, batch_time: 0.00471s, acc: 0.00000, auc: 0.90608
2020-04-22 11:44:54,481-INFO: mean_acc:0.76195, mean_auc:0.90577
```
PaddleRec/wide_deep/args.py
浏览文件 @
f18375f8
...
...
@@ -22,6 +22,7 @@ import sys
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--epochs"
,
type
=
int
,
default
=
40
,
help
=
"epochs"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
40
,
help
=
"batch_size"
)
...
...
@@ -37,7 +38,5 @@ def parse_args():
parser
.
add_argument
(
'--hidden3_units'
,
type
=
int
,
default
=
25
,
help
=
'hidden3_units'
)
args
=
parser
.
parse_args
()
return
args
return
args
PaddleRec/wide_deep/create_data.sh
浏览文件 @
f18375f8
...
...
@@ -6,7 +6,7 @@ test_path="data/adult.test"
train_data_path
=
"train_data/train_data.csv"
test_data_path
=
"test_data/test_data.csv"
pip
install
-r
requirements.txt
pip
install
-r
requirements.txt
wget
-P
data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
wget
-P
data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test
...
...
PaddleRec/wide_deep/infer.py
浏览文件 @
f18375f8
...
...
@@ -29,19 +29,19 @@ def run_infer(args,test_data_path):
wide_deep_model
=
wide_deep
()
test_data_generator
=
utils
.
CriteoDataset
()
test_reader
=
paddle
.
batch
(
test_data_generator
.
test
(
test_data_path
),
batch_size
=
args
.
batch_size
)
test_reader
=
paddle
.
batch
(
test_data_generator
.
test
(
test_data_path
),
batch_size
=
args
.
batch_size
)
inference_scope
=
fluid
.
Scope
()
startup_program
=
fluid
.
framework
.
Program
()
test_program
=
fluid
.
framework
.
Program
()
cur_model_path
=
os
.
path
.
join
(
args
.
model_dir
,
'epoch_'
+
str
(
args
.
test_epoch
),
"checkpoint"
)
cur_model_path
=
os
.
path
.
join
(
args
.
model_dir
,
'epoch_'
+
str
(
args
.
test_epoch
),
"checkpoint"
)
with
fluid
.
scope_guard
(
inference_scope
):
with
fluid
.
framework
.
program_guard
(
test_program
,
startup_program
):
inputs
=
wide_deep_model
.
input_data
()
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
loss
,
acc
,
auc
,
batch_auc
,
auc_states
=
wide_deep_model
.
model
(
inputs
,
args
.
hidden1_units
,
args
.
hidden2_units
,
args
.
hidden3_units
)
loss
,
acc
,
auc
,
batch_auc
,
auc_states
=
wide_deep_model
.
model
(
inputs
,
args
.
hidden1_units
,
args
.
hidden2_units
,
args
.
hidden3_units
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
...
...
@@ -56,32 +56,20 @@ def run_infer(args,test_data_path):
for
batch_id
,
data
in
enumerate
(
test_reader
()):
begin
=
time
.
time
()
acc_val
,
auc_val
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
acc
.
name
,
auc
.
name
],
return_numpy
=
True
)
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
acc
.
name
,
auc
.
name
],
return_numpy
=
True
)
mean_acc
.
append
(
np
.
array
(
acc_val
)[
0
])
mean_auc
.
append
(
np
.
array
(
auc_val
)[
0
])
end
=
time
.
time
()
logger
.
info
(
"batch_id: {},batch_time: {:.5f}s,acc: {:.5f},auc: {:.5f}"
.
format
(
batch_id
,
end
-
begin
,
np
.
array
(
acc_val
)[
0
],
np
.
array
(
auc_val
)[
0
]))
logger
.
info
(
"mean_acc:{:.5f},mean_auc:{:.5f}"
.
format
(
np
.
mean
(
mean_acc
),
np
.
mean
(
mean_auc
)))
logger
.
info
(
"batch_id: {}, batch_time: {:.5f}s, acc: {:.5f}, auc: {:.5f}"
.
format
(
batch_id
,
end
-
begin
,
np
.
array
(
acc_val
)[
0
],
np
.
array
(
auc_val
)[
0
]))
logger
.
info
(
"mean_acc:{:.5f}, mean_auc:{:.5f}"
.
format
(
np
.
mean
(
mean_acc
),
np
.
mean
(
mean_auc
)))
if
__name__
==
"__main__"
:
args
=
args
.
parse_args
()
run_infer
(
args
,
args
.
test_data_path
)
\ No newline at end of file
run_infer
(
args
,
args
.
test_data_path
)
\ No newline at end of file
PaddleRec/wide_deep/infer_gpu.sh
浏览文件 @
f18375f8
...
...
@@ -6,5 +6,4 @@ CUDA_VISIBLE_DEVICES=0 python infer.py --batch_size 40 \
--hidden1_units
75
\
--hidden2_units
50
\
--hidden3_units
25
\ No newline at end of file
\ No newline at end of file
PaddleRec/wide_deep/net.py
浏览文件 @
f18375f8
...
...
@@ -4,30 +4,32 @@ import math
import
paddle.fluid
as
fluid
class
wide_deep
(
object
):
def
wide_part
(
self
,
data
):
def
wide_part
(
self
,
data
):
out
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
8
)),
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-4
)),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
]
)),
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-4
)),
act
=
None
,
name
=
'wide'
)
return
out
def
fc
(
self
,
inputs
,
hidden_units
,
active
,
tag
):
output
=
fluid
.
layers
.
fc
(
input
=
inputs
,
def
fc
(
self
,
data
,
hidden_units
,
active
,
tag
):
output
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
hidden_units
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
58
))),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
]
))),
act
=
active
,
name
=
tag
)
return
output
def
deep_part
(
self
,
inputs
,
hidden1_units
,
hidden2_units
,
hidden3_units
):
def
deep_part
(
self
,
data
,
hidden1_units
,
hidden2_units
,
hidden3_units
):
l1
=
self
.
fc
(
data
,
hidden1_units
,
'relu'
,
'l1'
)
l2
=
self
.
fc
(
l1
,
hidden2_units
,
'relu'
,
'l2'
)
l3
=
self
.
fc
(
l2
,
hidden3_units
,
'relu'
,
'l3'
)
l1
=
self
.
fc
(
inputs
,
hidden1_units
,
'relu'
,
'l1'
)
l2
=
self
.
fc
(
l1
,
hidden2_units
,
'relu'
,
'l2'
)
l3
=
self
.
fc
(
l2
,
hidden3_units
,
'relu'
,
'l3'
)
return
l3
def
input_data
(
self
):
...
...
@@ -38,10 +40,10 @@ class wide_deep(object):
return
inputs
def
model
(
self
,
inputs
,
hidden1_units
,
hidden2_units
,
hidden3_units
):
def
model
(
self
,
inputs
,
hidden1_units
,
hidden2_units
,
hidden3_units
):
wide_output
=
self
.
wide_part
(
inputs
[
0
])
deep_output
=
self
.
deep_part
(
inputs
[
1
],
hidden1_units
,
hidden2_units
,
hidden3_units
)
deep_output
=
self
.
deep_part
(
inputs
[
1
],
hidden1_units
,
hidden2_units
,
hidden3_units
)
wide_model
=
fluid
.
layers
.
fc
(
input
=
wide_output
,
size
=
1
,
...
...
@@ -50,28 +52,19 @@ class wide_deep(object):
name
=
'w_wide'
)
deep_model
=
fluid
.
layers
.
fc
(
input
=
deep_output
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_deep'
)
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_deep'
)
prediction
=
fluid
.
layers
.
elementwise_add
(
wide_model
,
deep_model
)
pred
=
fluid
.
layers
.
sigmoid
(
fluid
.
layers
.
clip
(
prediction
,
min
=-
15.0
,
max
=
15.0
),
name
=
"prediction"
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
pred
,
label
=
fluid
.
layers
.
cast
(
x
=
inputs
[
2
],
dtype
=
'int64'
),
total
=
num_seqs
)
auc_val
,
batch_auc
,
auc_states
=
fluid
.
layers
.
auc
(
input
=
pred
,
label
=
fluid
.
layers
.
cast
(
x
=
inputs
[
2
],
dtype
=
'int64'
))
auc_val
,
batch_auc
,
auc_states
=
fluid
.
layers
.
auc
(
input
=
pred
,
label
=
fluid
.
layers
.
cast
(
x
=
inputs
[
2
],
dtype
=
'int64'
))
cost
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
prediction
,
label
=
inputs
[
2
])
cost
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
prediction
,
label
=
inputs
[
2
])
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
,
acc
,
auc_val
,
batch_auc
,
auc_states
return
avg_cost
,
acc
,
auc_val
,
batch_auc
,
auc_states
PaddleRec/wide_deep/train.py
浏览文件 @
f18375f8
...
...
@@ -12,13 +12,13 @@ logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
def
train
(
args
,
train_data_path
):
def
train
(
args
,
train_data_path
):
wide_deep_model
=
wide_deep
()
inputs
=
wide_deep_model
.
input_data
()
train_data_generator
=
utils
.
CriteoDataset
()
train_reader
=
paddle
.
batch
(
train_data_generator
.
train
(
train_data_path
),
batch_size
=
args
.
batch_size
)
train_reader
=
paddle
.
batch
(
train_data_generator
.
train
(
train_data_path
),
batch_size
=
args
.
batch_size
)
loss
,
acc
,
auc
,
batch_auc
,
auc_states
=
wide_deep_model
.
model
(
inputs
,
args
.
hidden1_units
,
args
.
hidden2_units
,
args
.
hidden3_units
)
loss
,
acc
,
auc
,
batch_auc
,
auc_states
=
wide_deep_model
.
model
(
inputs
,
args
.
hidden1_units
,
args
.
hidden2_units
,
args
.
hidden3_units
)
optimizer
=
fluid
.
optimizer
.
AdagradOptimizer
(
learning_rate
=
0.01
)
optimizer
.
minimize
(
loss
)
...
...
@@ -30,24 +30,18 @@ def train(args,train_data_path):
for
epoch
in
range
(
args
.
epochs
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
begin
=
time
.
time
()
loss_val
,
acc_val
,
auc_val
=
exe
.
run
(
program
=
fluid
.
default_main_program
(),
loss_val
,
acc_val
,
auc_val
=
exe
.
run
(
program
=
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
.
name
,
acc
.
name
,
auc
.
name
],
fetch_list
=
[
loss
.
name
,
acc
.
name
,
auc
.
name
],
return_numpy
=
True
)
end
=
time
.
time
()
logger
.
info
(
"epoch:{},batch_time:{:.5f}s,loss:{:.5f},acc:{:.5f},auc:{:.5f}"
.
format
(
epoch
,
end
-
begin
,
np
.
array
(
loss_val
)[
0
],
np
.
array
(
acc_val
)[
0
],
np
.
array
(
auc_val
)[
0
]))
logger
.
info
(
"epoch:{}, batch_time:{:.5f}s, loss:{:.5f}, acc:{:.5f}, auc:{:.5f}"
.
format
(
epoch
,
end
-
begin
,
np
.
array
(
loss_val
)[
0
],
np
.
array
(
acc_val
)[
0
],
np
.
array
(
auc_val
)[
0
]))
model_dir
=
os
.
path
.
join
(
args
.
model_dir
,
'epoch_'
+
str
(
epoch
+
1
),
"checkpoint"
)
model_dir
=
os
.
path
.
join
(
args
.
model_dir
,
'epoch_'
+
str
(
epoch
+
1
),
"checkpoint"
)
main_program
=
fluid
.
default_main_program
()
fluid
.
io
.
save
(
main_program
,
model_dir
)
if
__name__
==
"__main__"
:
args
=
args
.
parse_args
()
train
(
args
,
args
.
train_data_path
)
train
(
args
,
args
.
train_data_path
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录