提交 d02f1ccc 编写于 作者: O overlordmax

add wide_deep

上级 e71a2d38
# wide&deep
以下是本例的简要目录结构及说明:
```
├── README.md # 文档
├── requirements.txt # 需要的安装包
├── net.py # wide&deep网络文件
├── utils.py # 通用函数
├── args.py # 参数脚本
├── create_data.sh # 生成训练数据脚本
├── data_preparation.py # 数据预处理脚本
├── train.py # 训练文件
├── infer.py # 预测文件
├── train_gpu.sh # gpu训练shell脚本
├── train_cpu.sh # cpu训练shell脚本
├── infer_gpu.sh # gpu预测shell脚本
├── infer_cpu.sh # cpu预测shell脚本
```
## 简介
[《Wide & Deep Learning for Recommender Systems》]( https://arxiv.org/pdf/1606.07792.pdf)是Google 2016年发布的推荐框架,wide&deep设计了一种融合浅层(wide)模型和深层(deep)模型进行联合训练的框架,综合利用浅层模型的记忆能力和深层模型的泛化能力,实现单模型对推荐系统准确性和扩展性的兼顾。从推荐效果和服务性能两方面进行评价:
1. 效果上,在Google Play 进行线上A/B实验,wide&deep模型相比高度优化的Wide浅层模型,app下载率+3.9%。相比deep模型也有一定提升。
2. 性能上,通过切分一次请求需要处理的app 的Batch size为更小的size,并利用多线程并行请求达到提高处理效率的目的。单次响应耗时从31ms下降到14ms。
本例在paddlepaddle上实现wide&deep并在开源数据集Census-income Data上验证模型效果,在测试集上的平均acc和auc分别为:
> mean_acc: 0.76195
>
> mean_auc: 0.90335
## 数据下载及预处理
数据地址:
[adult.data](https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data)
[adult.test](https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test)
在create_data.sh脚本文件中添加文件的路径,并运行脚本。
```sh
mkdir train_data
mkdir test_data
mkdir data
train_path="data/adult.data" #原始训练数据
test_path="data/adult.test" #原始测试数据
train_data_path="train_data/train_data.csv" #处理后的训练数据
test_data_path="test_data/train_data.csv" #处理后的测试数据
pip install -r requirements.txt #安装必需包
wget -P data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
wget -P data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test
python data_preparation.py --train_path ${train_path} \
--test_path ${test_path} \
--train_data_path ${train_data_path}\
--test_data_path ${test_data_path}
```
## 环境
PaddlePaddle 1.7.0
python3.7
## 单机训练
GPU环境
在train_gpu.sh脚本文件中设置好数据路径、参数。
```sh
CUDA_VISIBLE_DEVICES=0 python train.py --epochs 40 \ #训练轮次
--batch_size 40 \ #batch大小
--use_gpu 1 \ #使用gpu训练
--train_data_path 'train_data/train_data.csv' \ #训练数据
--model_dir 'model_dir' #模型保存路径
--hidden1_units 75 \ #deep网络隐层大小
--hidden2_units 50 \
--hidden3_units 25
```
修改脚本的可执行权限并运行
```sh
./train_gpu.sh
```
CPU环境
在train_cpu.sh脚本文件中设置好数据路径、参数。
```sh
python train.py --epochs 40 \ #训练轮次
--batch_size 40 \ #batch大小
--use_gpu 0 \ #使用cpu训练
--train_data_path 'train_data/train_data.csv' \ #训练数据
--model_dir 'model_dir' #模型保存路径
--hidden1_units 75 \ #deep网络隐层大小
--hidden2_units 50 \
--hidden3_units 25
```
修改脚本的可执行权限并运行
```
./train_cpu.sh
```
## 单机预测
GPU环境
在infer_gpu.sh脚本文件中设置好数据路径、参数。
```sh
python infer.py --batch_size 40 \ #batch大小
--use_gpu 0 \ #使用cpu训练
--test_epoch 39 \ #选择那一轮的模型用来预测
--test_data_path 'test_data/test_data.csv' \ #测试数据
--model_dir 'model_dir' \ #模型路径
--hidden1_units 75 \ #隐层单元个数
--hidden2_units 50 \
--hidden3_units 25
```
修改脚本的可执行权限并运行
```sh
./infer_gpu.sh
```
CPU环境
在infer_cpu.sh脚本文件中设置好数据路径、参数。
```sh
python infer.py --batch_size 40 \ #batch大小
--use_gpu 0 \ #使用cpu训练
--test_epoch 39 \ #选择那一轮的模型用来预测
--test_data_path 'test_data/test_data.csv' \ #测试数据
--model_dir 'model_dir' \ #模型路径
--hidden1_units 75 \ #隐层单元个数
--hidden2_units 50 \
--hidden3_units 25
```
修改脚本的可执行权限并运行
```
./infer_cpu.sh
```
## 模型效果
在测试集的效果如下:
```
W0422 10:45:12.497740 1218 device_context.cc:237] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 9.2, Runtime API Version: 9.0
W0422 10:45:12.501889 1218 device_context.cc:245] device: 0, cuDNN Version: 7.3.
2020-04-22 10:45:13,804-INFO: batch_id: 0,batch_time: 0.00625s,acc: 0.72500,auc: 0.92790
2020-04-22 10:45:13,809-INFO: batch_id: 1,batch_time: 0.00468s,acc: 0.80000,auc: 0.92321
2020-04-22 10:45:13,814-INFO: batch_id: 2,batch_time: 0.00442s,acc: 0.82500,auc: 0.93003
2020-04-22 10:45:13,819-INFO: batch_id: 3,batch_time: 0.00434s,acc: 0.75000,auc: 0.94108
2020-04-22 10:45:13,824-INFO: batch_id: 4,batch_time: 0.00438s,acc: 0.67500,auc: 0.93013
2020-04-22 10:45:13,829-INFO: batch_id: 5,batch_time: 0.00438s,acc: 0.80000,auc: 0.92201
......
2020-04-22 10:45:15,914-INFO: batch_id: 403,batch_time: 0.00487s,acc: 0.80000,auc: 0.90454
2020-04-22 10:45:15,920-INFO: batch_id: 404,batch_time: 0.00505s,acc: 0.72500,auc: 0.90427
2020-04-22 10:45:15,925-INFO: batch_id: 405,batch_time: 0.00460s,acc: 0.77500,auc: 0.90405
2020-04-22 10:45:15,931-INFO: batch_id: 406,batch_time: 0.00517s,acc: 0.77500,auc: 0.90412
2020-04-22 10:45:15,936-INFO: batch_id: 407,batch_time: 0.00457s,acc: 0.00000,auc: 0.90415
2020-04-22 10:45:15,936-INFO: mean_acc:0.76195,mean_auc:0.90335
```
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import distutils.util
import sys
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--epochs", type=int, default=40, help="epochs")
parser.add_argument("--batch_size", type=int, default=40, help="batch_size")
parser.add_argument('--use_gpu', type=int, default=0, help='whether using gpu')
parser.add_argument('--test_epoch', type=str, default='1',help='test_epoch')
parser.add_argument('--train_path', type=str, default='data/adult.data', help='train_path')
parser.add_argument('--test_path', type=str, default='data/adult.test', help='test_path')
parser.add_argument('--train_data_path', type=str, default='train_data/train_data.csv', help='train_data_path')
parser.add_argument('--test_data_path', type=str, default='test_data/test_data.csv', help='test_data_path')
parser.add_argument('--model_dir', type=str, default='model_dir', help='test_data_path')
parser.add_argument('--hidden1_units', type=int, default=75, help='hidden1_units')
parser.add_argument('--hidden2_units', type=int, default=50, help='hidden2_units')
parser.add_argument('--hidden3_units', type=int, default=25, help='hidden3_units')
args = parser.parse_args()
return args
mkdir train_data
mkdir test_data
mkdir data
train_path="data/adult.data"
test_path="data/adult.test"
train_data_path="train_data/train_data.csv"
test_data_path="test_data/test_data.csv"
pip install -r requirements.txt
wget -P data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
wget -P data/ https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test
python data_preparation.py --train_path ${train_path} \
--test_path ${test_path} \
--train_data_path ${train_data_path}\
--test_data_path ${test_data_path}
import os
import io
import args
import pandas as pd
from sklearn import preprocessing
def _clean_file(source_path,target_path):
"""makes changes to match the CSV format."""
with io.open(source_path, 'r') as temp_eval_file:
with io.open(target_path, 'w') as eval_file:
for line in temp_eval_file:
line = line.strip()
line = line.replace(', ', ',')
if not line or ',' not in line:
continue
if line[-1] == '.':
line = line[:-1]
line += '\n'
eval_file.write(line)
def build_model_columns(train_data_path, test_data_path):
# The column names are from
# https://www2.1010data.com/documentationcenter/prod/Tutorials/MachineLearningExamples/CensusIncomeDataSet.html
column_names = [
'age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital_status', 'occupation', 'relationship', 'race', 'gender',
'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
'income_bracket'
]
# Load the dataset in Pandas
train_df = pd.read_csv(
train_data_path,
delimiter=',',
header=None,
index_col=None,
names=column_names)
test_df = pd.read_csv(
test_data_path,
delimiter=',',
header=None,
index_col=None,
names=column_names)
# First group of tasks according to the paper
#label_columns = ['income_50k', 'marital_stat']
categorical_columns = ['education','marital_status','relationship','workclass','occupation']
for col in categorical_columns:
label_train = preprocessing.LabelEncoder()
train_df[col]= label_train.fit_transform(train_df[col])
label_test = preprocessing.LabelEncoder()
test_df[col]= label_test.fit_transform(test_df[col])
bins = [18, 25, 30, 35, 40, 45, 50, 55, 60, 65]
train_df['age_buckets'] = pd.cut(train_df['age'].values.tolist(), bins,labels=False)
test_df['age_buckets'] = pd.cut(test_df['age'].values.tolist(), bins,labels=False)
base_columns = ['education', 'marital_status', 'relationship', 'workclass', 'occupation', 'age_buckets']
train_df['education_occupation'] = train_df['education'].astype(str) + '_' + train_df['occupation'].astype(str)
test_df['education_occupation'] = test_df['education'].astype(str) + '_' + test_df['occupation'].astype(str)
train_df['age_buckets_education_occupation'] = train_df['age_buckets'].astype(str) + '_' + train_df['education'].astype(str) + '_' + train_df['occupation'].astype(str)
test_df['age_buckets_education_occupation'] = test_df['age_buckets'].astype(str) + '_' + test_df['education'].astype(str) + '_' + test_df['occupation'].astype(str)
crossed_columns = ['education_occupation','age_buckets_education_occupation']
for col in crossed_columns:
label_train = preprocessing.LabelEncoder()
train_df[col]= label_train.fit_transform(train_df[col])
label_test = preprocessing.LabelEncoder()
test_df[col]= label_test.fit_transform(test_df[col])
wide_columns = base_columns + crossed_columns
train_df_temp = pd.get_dummies(train_df[categorical_columns],columns=categorical_columns)
test_df_temp = pd.get_dummies(test_df[categorical_columns], columns=categorical_columns)
train_df = train_df.join(train_df_temp)
test_df = test_df.join(test_df_temp)
deep_columns = list(train_df_temp.columns)+ ['age','education_num','capital_gain','capital_loss','hours_per_week']
train_df['label'] = train_df['income_bracket'].apply(lambda x : 1 if x == '>50K' else 0)
test_df['label'] = test_df['income_bracket'].apply(lambda x : 1 if x == '>50K' else 0)
with io.open('train_data/columns.txt','w') as f:
write_str = str(len(wide_columns)) + '\n' + str(len(deep_columns)) + '\n'
f.write(write_str)
f.close()
with io.open('test_data/columns.txt','w') as f:
write_str = str(len(wide_columns)) + '\n' + str(len(deep_columns)) + '\n'
f.write(write_str)
f.close()
train_df[wide_columns + deep_columns + ['label']].fillna(0).to_csv(train_data_path,index=False)
test_df[wide_columns + deep_columns + ['label']].fillna(0).to_csv(test_data_path,index=False)
def clean_file(train_path, test_path, train_data_path, test_data_path):
_clean_file(train_path, train_data_path)
_clean_file(test_path, test_data_path)
if __name__ == '__main__':
args = args.parse_args()
clean_file(args.train_path, args.test_path, args.train_data_path, args.test_data_path)
build_model_columns(args.train_data_path, args.test_data_path)
\ No newline at end of file
import numpy as np
import os
import paddle.fluid as fluid
from net import wide_deep
import logging
import paddle
import args
import utils
import time
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
def set_zero(var_name,scope=fluid.global_scope(), place=fluid.CPUPlace(),param_type="int64"):
"""
Set tensor of a Variable to zero.
Args:
var_name(str): name of Variable
scope(Scope): Scope object, default is fluid.global_scope()
place(Place): Place object, default is fluid.CPUPlace()
param_type(str): param data type, default is int64
"""
param = scope.var(var_name).get_tensor()
param_array = np.zeros(param._get_dims()).astype(param_type)
param.set(param_array, place)
def run_infer(args,test_data_path):
wide_deep_model = wide_deep()
test_data_generator = utils.CriteoDataset()
test_reader = paddle.batch(test_data_generator.test(test_data_path),batch_size=args.batch_size)
inference_scope = fluid.Scope()
startup_program = fluid.framework.Program()
test_program = fluid.framework.Program()
cur_model_path = os.path.join(args.model_dir,'epoch_' + str(args.test_epoch), "checkpoint")
with fluid.scope_guard(inference_scope):
with fluid.framework.program_guard(test_program, startup_program):
inputs = wide_deep_model.input_data()
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
loss, acc, auc, batch_auc, auc_states = wide_deep_model.model(inputs,args.hidden1_units, args.hidden2_units, args.hidden3_units)
exe = fluid.Executor(place)
exe.run(startup_program)
fluid.load(fluid.default_main_program(), cur_model_path,exe)
feeder = fluid.DataFeeder(feed_list=inputs, place=place)
for var in auc_states: # reset auc states
set_zero(var.name, scope=inference_scope, place=place)
mean_acc = []
mean_auc = []
for batch_id, data in enumerate(test_reader()):
begin = time.time()
acc_val,auc_val = exe.run(program=test_program,
feed=feeder.feed(data),
fetch_list=[acc.name,auc.name],
return_numpy=True
)
mean_acc.append(np.array(acc_val)[0])
mean_auc.append(np.array(auc_val)[0])
end = time.time()
logger.info("batch_id: {},batch_time: {:.5f}s,acc: {:.5f},auc: {:.5f}".format(batch_id,end-begin,np.array(acc_val)[0],np.array(auc_val)[0]))
logger.info("mean_acc:{:.5f},mean_auc:{:.5f}".format(np.mean(mean_acc),np.mean(mean_auc)))
if __name__ == "__main__":
args = args.parse_args()
run_infer(args,args.test_data_path)
\ No newline at end of file
python infer.py --batch_size 40 \
--use_gpu 0 \
--test_epoch 39 \
--test_data_path 'test_data/test_data.csv' \
--model_dir 'model_dir' \
--hidden1_units 75 \
--hidden2_units 50 \
--hidden3_units 25
\ No newline at end of file
CUDA_VISIBLE_DEVICES=0 python infer.py --batch_size 40 \
--use_gpu 1 \
--test_epoch 39 \
--test_data_path 'test_data/test_data.csv' \
--model_dir 'model_dir' \
--hidden1_units 75 \
--hidden2_units 50 \
--hidden3_units 25
\ No newline at end of file
import paddle
import io
import math
import paddle.fluid as fluid
class wide_deep(object):
def wide_part(self,data):
out = fluid.layers.fc(input=data,
size=1,
param_attr=fluid.ParamAttr(initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0 / math.sqrt(8)),
regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=1e-4)),
act=None,
name='wide')
return out
def fc(self,inputs,hidden_units,active,tag):
output = fluid.layers.fc(input=inputs,
size=hidden_units,
param_attr=fluid.ParamAttr(initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0 / math.sqrt(58))),
act=active,
name=tag)
return output
def deep_part(self,inputs,hidden1_units, hidden2_units, hidden3_units):
l1 = self.fc(inputs,hidden1_units,'relu','l1')
l2 = self.fc(l1,hidden2_units,'relu','l2')
l3 = self.fc(l2,hidden3_units,'relu','l3')
return l3
def input_data(self):
wide_input = fluid.data(name='wide_input', shape=[None, 8], dtype='float32')
deep_input = fluid.data(name='deep_input', shape=[None, 58], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='float32')
inputs = [wide_input] + [deep_input] + [label]
return inputs
def model(self,inputs,hidden1_units, hidden2_units, hidden3_units):
wide_output = self.wide_part(inputs[0])
deep_output = self.deep_part(inputs[1],hidden1_units, hidden2_units, hidden3_units)
wide_model = fluid.layers.fc(input=wide_output,
size=1,
param_attr=fluid.ParamAttr(initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0)),
act=None,
name='w_wide')
deep_model = fluid.layers.fc(input=deep_output,
size=1,
param_attr=fluid.ParamAttr(initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0)),
act=None,
name='w_deep')
prediction = fluid.layers.elementwise_add(wide_model, deep_model)
pred = fluid.layers.sigmoid(fluid.layers.clip(prediction, min=-15.0, max=15.0), name="prediction")
num_seqs = fluid.layers.create_tensor(dtype='int64')
acc = fluid.layers.accuracy(input=pred, label=fluid.layers.cast(x=inputs[2], dtype='int64'), total=num_seqs)
auc_val, batch_auc, auc_states = fluid.layers.auc(input=pred, label=fluid.layers.cast(x=inputs[2], dtype='int64'))
cost = fluid.layers.sigmoid_cross_entropy_with_logits(x=prediction,label=inputs[2])
avg_cost = fluid.layers.mean(cost)
return avg_cost,acc,auc_val, batch_auc, auc_states
absl-py==0.8.1
aspy.yaml==1.3.0
attrs==19.2.0
audioread==2.1.8
backcall==0.1.0
bleach==3.1.0
cachetools==4.0.0
certifi==2019.9.11
cffi==1.14.0
cfgv==2.0.1
chardet==3.0.4
Click==7.0
cloudpickle==1.2.1
cma==2.7.0
colorlog==4.1.0
cycler==0.10.0
Cython==0.29
decorator==4.4.0
entrypoints==0.3
flake8==3.7.9
Flask==1.1.1
funcsigs==1.0.2
future==0.18.0
google-auth==1.10.0
google-auth-oauthlib==0.4.1
graphviz==0.13
grpcio==1.26.0
gunicorn==20.0.4
gym==0.12.1
h5py==2.9.0
identify==1.4.10
idna==2.8
imageio==2.6.1
imageio-ffmpeg==0.3.0
importlib-metadata==0.23
ipykernel==5.1.0
ipython==7.0.1
ipython-genutils==0.2.0
itsdangerous==1.1.0
jedi==0.15.1
jieba==0.42.1
Jinja2==2.10.1
joblib==0.14.1
jsonschema==3.1.1
jupyter-client==5.3.3
jupyter-core==4.5.0
kiwisolver==1.1.0
librosa==0.7.2
llvmlite==0.31.0
Markdown==3.1.1
MarkupSafe==1.1.1
matplotlib==2.2.3
mccabe==0.6.1
mistune==0.8.4
more-itertools==7.2.0
moviepy==1.0.1
nbconvert==5.3.1
nbformat==4.4.0
networkx==2.4
nltk==3.4.5
nodeenv==1.3.4
notebook==5.7.0
numba==0.48.0
numpy==1.16.4
oauthlib==3.1.0
objgraph==3.4.1
opencv-python==4.1.1.26
paddlehub==1.5.0
paddlepaddle-gpu==1.7.1.post97
pandas==0.23.4
pandocfilters==1.4.2
parl==1.1.2
parso==0.5.1
pexpect==4.7.0
pickleshare==0.7.5
Pillow==6.2.0
pre-commit==1.21.0
prettytable==0.7.2
proglog==0.1.9
prometheus-client==0.5.0
prompt-toolkit==2.0.10
protobuf==3.10.0
ptyprocess==0.6.0
pyarrow==0.13.0
pyasn1==0.4.8
pyasn1-modules==0.2.7
pycodestyle==2.5.0
pycparser==2.19
pyflakes==2.1.1
pyglet==1.4.5
Pygments==2.4.2
pyparsing==2.4.2
pyrsistent==0.15.4
python-dateutil==2.8.0
pytz==2019.3
PyYAML==5.1.2
pyzmq==18.0.1
rarfile==3.1
recordio==0.1.7
requests==2.22.0
requests-oauthlib==1.3.0
resampy==0.2.2
rsa==4.0
scikit-learn==0.20.0
scipy==1.3.0
seaborn==0.10.0
Send2Trash==1.5.0
sentencepiece==0.1.85
simplegeneric==0.8.1
six==1.12.0
sklearn==0.0
SoundFile==0.10.3.post1
tb-nightly==1.15.0a20190801
tb-paddle==0.3.6
tensorboard==2.1.0
tensorboardX==1.8
termcolor==1.1.0
terminado==0.8.2
testpath==0.4.2
toml==0.10.0
tornado==5.1.1
tqdm==4.36.1
traitlets==4.3.3
urllib3==1.25.6
virtualenv==16.7.9
visualdl==1.3.0
wcwidth==0.1.7
webencodings==0.5.1
Werkzeug==0.16.0
xgboost==1.0.1
yapf==0.26.0
zipp==0.6.0
import numpy as np
import os
import paddle.fluid as fluid
from net import wide_deep
import logging
import paddle
import args
import utils
import time
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
def train(args,train_data_path):
wide_deep_model = wide_deep()
inputs = wide_deep_model.input_data()
train_data_generator = utils.CriteoDataset()
train_reader = paddle.batch(train_data_generator.train(train_data_path),batch_size=args.batch_size)
loss,acc,auc, batch_auc, auc_states = wide_deep_model.model(inputs,args.hidden1_units, args.hidden2_units, args.hidden3_units)
optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.01)
optimizer.minimize(loss)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feeder = fluid.DataFeeder(feed_list=inputs, place=place)
for epoch in range(args.epochs):
for batch_id, data in enumerate(train_reader()):
begin = time.time()
loss_val,acc_val,auc_val = exe.run(program=fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[loss.name,acc.name,auc.name],
return_numpy=True)
end = time.time()
logger.info("epoch:{},batch_time:{:.5f}s,loss:{:.5f},acc:{:.5f},auc:{:.5f}".format(epoch,end-begin,np.array(loss_val)[0],np.array(acc_val)[0],np.array(auc_val)[0]))
model_dir = os.path.join(args.model_dir,'epoch_' + str(epoch + 1), "checkpoint")
main_program = fluid.default_main_program()
fluid.io.save(main_program,model_dir)
if __name__ == "__main__":
args = args.parse_args()
train(args,args.train_data_path)
python train.py --epochs 40 \
--batch_size 40 \
--use_gpu 0 \
--train_data_path 'train_data/train_data.csv' \
--model_dir 'model_dir' \
--hidden1_units 75 \
--hidden2_units 50 \
--hidden3_units 25
\ No newline at end of file
CUDA_VISIBLE_DEVICES=0 python train.py --epochs 40 \
--batch_size 40 \
--use_gpu 1 \
--train_data_path 'train_data/train_data.csv' \
--model_dir 'model_dir' \
--hidden1_units 75 \
--hidden2_units 50 \
--hidden3_units 25
import numpy as np
import os
import paddle.fluid as fluid
class CriteoDataset(object):
def _reader_creator(self, file):
def reader():
with open(file, 'r') as f:
for i,line in enumerate(f):
if i == 0:
continue
line = line.strip().split(',')
features = list(map(float, line))
wide_feat = features[0:8]
deep_feat = features[8:58+8]
label = features[-1]
output = []
output.append(wide_feat)
output.append(deep_feat)
output.append([label])
yield output
return reader
def train(self, file):
return self._reader_creator(file)
def test(self, file):
return self._reader_creator(file)
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册