Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f14db82d
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f14db82d
编写于
4月 08, 2018
作者:
G
Guo Sheng
提交者:
GitHub
4月 08, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #783 from guoshengCS/fix-transformer-batchsize
Decouple the program desc with batch_size in Transformer.
上级
76526e51
baa01f6f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
170 addition
and
105 deletion
+170
-105
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+3
-2
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+61
-29
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+75
-46
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+31
-28
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
f14db82d
...
...
@@ -25,8 +25,7 @@ class TrainTaskConfig(object):
class
InferTaskConfig
(
object
):
use_gpu
=
False
# the number of examples in one run for sequence generation.
# currently the batch size can only be set to 1.
batch_size
=
1
batch_size
=
10
# the parameters for beam search.
beam_size
=
5
...
...
@@ -103,6 +102,7 @@ encoder_input_data_names = (
"src_word"
,
"src_pos"
,
"src_slf_attn_bias"
,
"src_data_shape"
,
"src_slf_attn_pre_softmax_shape"
,
"src_slf_attn_post_softmax_shape"
,
)
...
...
@@ -112,6 +112,7 @@ decoder_input_data_names = (
"trg_pos"
,
"trg_slf_attn_bias"
,
"trg_src_attn_bias"
,
"trg_data_shape"
,
"trg_slf_attn_pre_softmax_shape"
,
"trg_slf_attn_post_softmax_shape"
,
"trg_src_attn_pre_softmax_shape"
,
...
...
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
f14db82d
...
...
@@ -24,6 +24,7 @@ def translate_batch(exe,
n_best
,
batch_size
,
n_head
,
d_model
,
src_pad_idx
,
trg_pad_idx
,
bos_idx
,
...
...
@@ -43,6 +44,11 @@ def translate_batch(exe,
return_pos
=
True
,
return_attn_bias
=
True
,
return_max_len
=
False
)
# Append the data shape input to reshape the output of embedding layer.
enc_in_data
=
enc_in_data
+
[
np
.
array
(
[
-
1
,
enc_in_data
[
2
].
shape
[
-
1
],
d_model
],
dtype
=
"int32"
)
]
# Append the shape inputs to reshape before and after softmax in encoder
# self attention.
enc_in_data
=
enc_in_data
+
[
...
...
@@ -59,9 +65,14 @@ def translate_batch(exe,
scores
=
np
.
zeros
((
batch_size
,
beam_size
),
dtype
=
"float32"
)
prev_branchs
=
[[]
for
i
in
range
(
batch_size
)]
next_ids
=
[[]
for
i
in
range
(
batch_size
)]
# Use beam_
map to map the instance idx in batch to beam idx
, since the
# Use beam_
inst_map to map beam idx to the instance idx in batch
, since the
# size of feeded batch is changing.
beam_map
=
range
(
batch_size
)
beam_inst_map
=
{
beam_idx
:
inst_idx
for
inst_idx
,
beam_idx
in
enumerate
(
range
(
batch_size
))
}
# Use active_beams to recode the alive.
active_beams
=
range
(
batch_size
)
def
beam_backtrace
(
prev_branchs
,
next_ids
,
n_best
=
beam_size
):
"""
...
...
@@ -98,8 +109,14 @@ def translate_batch(exe,
[
-
1e9
]).
astype
(
"float32"
)
# This is used to remove attention on the paddings of source sequences.
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_length
,
:],
[
beam_size
,
1
,
trg_max_len
,
1
])
src_slf_attn_bias
[:,
:,
::
src_max_length
,
:][:,
np
.
newaxis
],
[
1
,
beam_size
,
1
,
trg_max_len
,
1
]).
reshape
([
-
1
,
src_slf_attn_bias
.
shape
[
1
],
trg_max_len
,
src_slf_attn_bias
.
shape
[
-
1
]
])
# Append the shape input to reshape the output of embedding layer.
trg_data_shape
=
np
.
array
(
[
batch_size
*
beam_size
,
trg_max_len
,
d_model
],
dtype
=
"int32"
)
# Append the shape inputs to reshape before and after softmax in
# decoder self attention.
trg_slf_attn_pre_softmax_shape
=
np
.
array
(
...
...
@@ -112,22 +129,24 @@ def translate_batch(exe,
[
-
1
,
trg_src_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
trg_src_attn_post_softmax_shape
=
np
.
array
(
trg_src_attn_bias
.
shape
,
dtype
=
"int32"
)
enc_output
=
np
.
tile
(
enc_output
,
[
beam_size
,
1
,
1
])
enc_output
=
np
.
tile
(
enc_output
[:,
np
.
newaxis
],
[
1
,
beam_size
,
1
,
1
]).
reshape
(
[
-
1
,
enc_output
.
shape
[
-
2
],
enc_output
.
shape
[
-
1
]])
return
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
\
trg_
slf_attn_pre_softmax_shape
,
trg_slf_attn_post
_softmax_shape
,
\
trg_s
rc_attn_pre_softmax_shape
,
trg_src_attn_post
_softmax_shape
,
\
enc_output
trg_
data_shape
,
trg_slf_attn_pre
_softmax_shape
,
\
trg_s
lf_attn_post_softmax_shape
,
trg_src_attn_pre
_softmax_shape
,
\
trg_src_attn_post_softmax_shape
,
enc_output
def
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
):
def
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
,
beam_inst_map
):
"""
Update the input data of decoder mainly by slicing from the previous
input data and dropping the finished instance beams.
"""
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
\
trg_
slf_attn_pre_softmax_shape
,
trg_slf_attn_post
_softmax_shape
,
\
trg_s
rc_attn_pre_softmax_shape
,
trg_src_attn_post
_softmax_shape
,
\
enc_output
=
dec_in_data
trg_cur_len
=
len
(
next_ids
[
0
])
+
1
# include the <bos>
trg_
data_shape
,
trg_slf_attn_pre
_softmax_shape
,
\
trg_s
lf_attn_post_softmax_shape
,
trg_src_attn_pre
_softmax_shape
,
\
trg_src_attn_post_softmax_shape
,
enc_output
=
dec_in_data
trg_cur_len
=
trg_slf_attn_bias
.
shape
[
-
1
]
+
1
trg_words
=
np
.
array
(
[
beam_backtrace
(
prev_branchs
[
beam_idx
],
next_ids
[
beam_idx
])
...
...
@@ -138,6 +157,7 @@ def translate_batch(exe,
trg_pos
=
np
.
array
(
[
range
(
1
,
trg_cur_len
+
1
)]
*
len
(
active_beams
)
*
beam_size
,
dtype
=
"int64"
).
reshape
([
-
1
,
1
])
active_beams
=
[
beam_inst_map
[
beam_idx
]
for
beam_idx
in
active_beams
]
active_beams_indice
=
(
(
np
.
array
(
active_beams
)
*
beam_size
)[:,
np
.
newaxis
]
+
np
.
array
(
range
(
beam_size
))[
np
.
newaxis
,
:]).
flatten
()
...
...
@@ -152,6 +172,10 @@ def translate_batch(exe,
trg_src_attn_bias
=
np
.
tile
(
trg_src_attn_bias
[
active_beams_indice
,
:,
::
trg_src_attn_bias
.
shape
[
2
],
:],
[
1
,
1
,
trg_cur_len
,
1
])
# Append the shape input to reshape the output of embedding layer.
trg_data_shape
=
np
.
array
(
[
len
(
active_beams
)
*
beam_size
,
trg_cur_len
,
d_model
],
dtype
=
"int32"
)
# Append the shape inputs to reshape before and after softmax in
# decoder self attention.
trg_slf_attn_pre_softmax_shape
=
np
.
array
(
...
...
@@ -166,9 +190,9 @@ def translate_batch(exe,
trg_src_attn_bias
.
shape
,
dtype
=
"int32"
)
enc_output
=
enc_output
[
active_beams_indice
,
:,
:]
return
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
\
trg_
slf_attn_pre_softmax_shape
,
trg_slf_attn_post
_softmax_shape
,
\
trg_s
rc_attn_pre_softmax_shape
,
trg_src_attn_post
_softmax_shape
,
\
enc_output
trg_
data_shape
,
trg_slf_attn_pre
_softmax_shape
,
\
trg_s
lf_attn_post_softmax_shape
,
trg_src_attn_pre
_softmax_shape
,
\
trg_src_attn_post_softmax_shape
,
enc_output
dec_in_data
=
init_dec_in_data
(
batch_size
,
beam_size
,
enc_in_data
,
enc_output
)
...
...
@@ -177,15 +201,18 @@ def translate_batch(exe,
feed
=
dict
(
zip
(
dec_in_names
,
dec_in_data
)),
fetch_list
=
dec_out_names
)[
0
]
predict_all
=
np
.
log
(
predict_all
.
reshape
([
len
(
beam_
map
)
*
beam_size
,
i
+
1
,
-
1
])[:,
-
1
,
:])
predict_all
=
(
predict_all
+
scores
[
beam_map
].
reshape
(
[
len
(
beam_map
)
*
beam_size
,
-
1
])).
reshape
(
[
len
(
beam_map
),
beam_size
,
-
1
])
predict_all
.
reshape
([
len
(
beam_
inst_map
)
*
beam_size
,
i
+
1
,
-
1
])
[:,
-
1
,
:])
predict_all
=
(
predict_all
+
scores
[
active_beams
].
reshape
(
[
len
(
beam_
inst_
map
)
*
beam_size
,
-
1
])).
reshape
(
[
len
(
beam_
inst_
map
),
beam_size
,
-
1
])
if
not
output_unk
:
# To exclude the <unk> token.
predict_all
[:,
:,
unk_idx
]
=
-
1e9
active_beams
=
[]
for
inst_idx
,
beam_idx
in
enumerate
(
beam_map
):
for
beam_idx
in
range
(
batch_size
):
if
not
beam_inst_map
.
has_key
(
beam_idx
):
continue
inst_idx
=
beam_inst_map
[
beam_idx
]
predict
=
(
predict_all
[
inst_idx
,
:,
:]
if
i
!=
0
else
predict_all
[
inst_idx
,
0
,
:]).
flatten
()
top_k_indice
=
np
.
argpartition
(
predict
,
-
beam_size
)[
-
beam_size
:]
...
...
@@ -198,10 +225,14 @@ def translate_batch(exe,
next_ids
[
beam_idx
].
append
(
top_scores_ids
%
predict_all
.
shape
[
-
1
])
if
next_ids
[
beam_idx
][
-
1
][
0
]
!=
eos_idx
:
active_beams
.
append
(
beam_idx
)
beam_map
=
active_beams
if
len
(
beam_map
)
==
0
:
if
len
(
active_beams
)
==
0
:
break
dec_in_data
=
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
)
dec_in_data
=
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
,
beam_inst_map
)
beam_inst_map
=
{
beam_idx
:
inst_idx
for
inst_idx
,
beam_idx
in
enumerate
(
active_beams
)
}
# Decode beams and select n_best sequences for each instance by backtrace.
seqs
=
[
...
...
@@ -215,10 +246,8 @@ def translate_batch(exe,
def
main
():
place
=
fluid
.
CUDAPlace
(
0
)
if
InferTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# The current program desc is coupled with batch_size and the only
# supported batch size is 1 currently.
encoder_program
=
fluid
.
Program
()
model
.
batch_size
=
InferTaskConfig
.
batch_size
with
fluid
.
program_guard
(
main_program
=
encoder_program
):
enc_output
=
encoder
(
ModelHyperParams
.
src_vocab_size
+
1
,
...
...
@@ -228,7 +257,6 @@ def main():
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
pos_pad_idx
)
model
.
batch_size
=
InferTaskConfig
.
batch_size
*
InferTaskConfig
.
beam_size
decoder_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
=
decoder_program
):
predict
=
decoder
(
...
...
@@ -273,6 +301,9 @@ def main():
trg_idx2word
=
paddle
.
dataset
.
wmt16
.
get_dict
(
"de"
,
dict_size
=
ModelHyperParams
.
trg_vocab_size
,
reverse
=
True
)
# Append the <pad> token since the dict provided by dataset.wmt16 does
# not include it.
trg_idx2word
[
ModelHyperParams
.
trg_pad_idx
]
=
"<pad>"
def
post_process_seq
(
seq
,
bos_idx
=
ModelHyperParams
.
bos_idx
,
...
...
@@ -306,6 +337,7 @@ def main():
InferTaskConfig
.
n_best
,
len
(
data
),
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
bos_idx
,
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
f14db82d
...
...
@@ -7,9 +7,6 @@ import paddle.fluid.layers as layers
from
config
import
TrainTaskConfig
,
pos_enc_param_names
,
\
encoder_input_data_names
,
decoder_input_data_names
,
label_data_names
# FIXME(guosheng): Remove out the batch_size from the model.
batch_size
=
TrainTaskConfig
.
batch_size
def
position_encoding_init
(
n_position
,
d_pos_vec
):
"""
...
...
@@ -85,9 +82,10 @@ def multi_head_attention(queries,
return
x
hidden_size
=
x
.
shape
[
-
1
]
# FIXME(guosheng): Decouple the program desc with batch_size.
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped
=
layers
.
reshape
(
x
=
x
,
shape
=
[
batch_size
,
-
1
,
n_head
,
hidden_size
//
n_head
])
x
=
x
,
shape
=
[
0
,
-
1
,
n_head
,
hidden_size
//
n_head
])
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
...
...
@@ -103,11 +101,11 @@ def multi_head_attention(queries,
raise
ValueError
(
"Input(x) should be a 4-D Tensor."
)
trans_x
=
layers
.
transpose
(
x
,
perm
=
[
0
,
2
,
1
,
3
])
# FIXME(guosheng): Decouple the program desc with batch_size.
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return
layers
.
reshape
(
x
=
trans_x
,
shape
=
map
(
int
,
[
batch_size
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
shape
=
map
(
int
,
[
0
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
def
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_model
,
dropout_rate
):
"""
...
...
@@ -205,6 +203,7 @@ def prepare_encoder(src_word,
src_max_len
,
dropout_rate
=
0.
,
pos_pad_idx
=
0
,
src_data_shape
=
None
,
pos_enc_param_name
=
None
):
"""Add word embeddings and position encodings.
The output tensor has a shape of:
...
...
@@ -224,9 +223,10 @@ def prepare_encoder(src_word,
param_attr
=
fluid
.
ParamAttr
(
name
=
pos_enc_param_name
,
trainable
=
False
))
enc_input
=
src_word_emb
+
src_pos_enc
# FIXME(guosheng): Decouple the program desc with batch_size.
enc_input
=
layers
.
reshape
(
x
=
enc_input
,
shape
=
[
batch_size
,
-
1
,
src_emb_dim
])
enc_input
=
layers
.
reshape
(
x
=
enc_input
,
shape
=
[
-
1
,
src_max_len
,
src_emb_dim
],
actual_shape
=
src_data_shape
)
return
layers
.
dropout
(
enc_input
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
if
dropout_rate
else
enc_input
...
...
@@ -401,20 +401,23 @@ def decoder(dec_input,
def
make_inputs
(
input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
is_pos
,
slf_attn_bias_flag
,
src_attn_bias_flag
,
enc_output_flag
=
False
,
data_shape_flag
=
True
,
slf_attn_shape_flag
=
True
,
src_attn_shape_flag
=
True
):
"""
Define the input data layers for the transformer model.
"""
input_layers
=
[]
# The shapes here act as placeholder.
# The shapes set here is to pass the infer-shape in compile time.
batch_size
=
1
# Only for the infer-shape in compile time.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
# The actual data shape of word is:
# [batch_size * max_len_in_batch, 1]
word
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
*
max_length
,
1
],
...
...
@@ -422,6 +425,8 @@ def make_inputs(input_data_names,
append_batch_size
=
False
)
input_layers
+=
[
word
]
# This is used for position data or label weight.
# The actual data shape of pos is:
# [batch_size * max_len_in_batch, 1]
pos
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
*
max_length
,
1
],
...
...
@@ -432,6 +437,8 @@ def make_inputs(input_data_names,
# This input is used to remove attention weights on paddings for the
# encoder and to remove attention weights on subsequent words for the
# decoder.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, n_head, max_len_in_batch, max_len_in_batch]
slf_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
...
...
@@ -439,40 +446,56 @@ def make_inputs(input_data_names,
append_batch_size
=
False
)
input_layers
+=
[
slf_attn_bias
]
if
src_attn_bias_flag
:
# This input is used to remove attention weights on paddings.
# This input is used to remove attention weights on paddings. It's used
# in encoder-decoder attention.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, n_head, trg_max_len_in_batch, src_max_len_in_batch]
src_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
input_layers
+=
[
src_attn_bias
]
if
data_shape_flag
:
# This input is used to reshape the output of embedding layer.
data_shape
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
3
],
dtype
=
"int32"
,
append_batch_size
=
False
)
input_layers
+=
[
data_shape
]
if
slf_attn_shape_flag
:
# This shape input is used to reshape before softmax in self attention.
slf_attn_pre_softmax_shape
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
3
],
shape
=
[
2
],
dtype
=
"int32"
,
append_batch_size
=
False
)
input_layers
+=
[
slf_attn_pre_softmax_shape
]
# This shape input is used to reshape after softmax in self attention.
slf_attn_post_softmax_shape
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
3
],
shape
=
[
4
],
dtype
=
"int32"
,
append_batch_size
=
False
)
input_layers
+=
[
slf_attn_post_softmax_shape
]
if
src_attn_shape_flag
:
src_attn_pre_softmax_shape
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
3
],
shape
=
[
2
],
dtype
=
"int32"
,
append_batch_size
=
False
)
input_layers
+=
[
src_attn_pre_softmax_shape
]
src_attn_post_softmax_shape
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
3
],
shape
=
[
4
],
dtype
=
"int32"
,
append_batch_size
=
False
)
input_layers
+=
[
src_attn_post_softmax_shape
]
if
enc_output_flag
:
# This input is used in independent decoder program for inference.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, max_len_in_batch, d_model]
enc_output
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
,
max_length
,
d_model
],
...
...
@@ -497,16 +520,16 @@ def transformer(
src_pad_idx
,
trg_pad_idx
,
pos_pad_idx
,
):
enc_input
_layer
s
=
make_inputs
(
enc_inputs
=
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
is_pos
=
True
,
slf_attn_bias_flag
=
True
,
src_attn_bias_flag
=
False
,
enc_output_flag
=
False
,
data_shape_flag
=
True
,
slf_attn_shape_flag
=
True
,
src_attn_shape_flag
=
False
)
...
...
@@ -522,18 +545,18 @@ def transformer(
dropout_rate
,
src_pad_idx
,
pos_pad_idx
,
enc_input
_layer
s
,
)
enc_inputs
,
)
dec_input
_layer
s
=
make_inputs
(
dec_inputs
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
is_pos
=
True
,
slf_attn_bias_flag
=
True
,
src_attn_bias_flag
=
True
,
enc_output_flag
=
False
,
data_shape_flag
=
True
,
slf_attn_shape_flag
=
True
,
src_attn_shape_flag
=
True
)
...
...
@@ -549,7 +572,7 @@ def transformer(
dropout_rate
,
trg_pad_idx
,
pos_pad_idx
,
dec_input
_layer
s
,
dec_inputs
,
enc_output
,
)
# Padding index do not contribute to the total loss. The weights is used to
...
...
@@ -558,12 +581,12 @@ def transformer(
label_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
is_pos
=
False
,
slf_attn_bias_flag
=
False
,
src_attn_bias_flag
=
False
,
enc_output_flag
=
False
,
data_shape_flag
=
False
,
slf_attn_shape_flag
=
False
,
src_attn_shape_flag
=
False
)
cost
=
layers
.
softmax_with_cross_entropy
(
logits
=
predict
,
label
=
gold
)
...
...
@@ -571,7 +594,7 @@ def transformer(
sum_cost
=
layers
.
reduce_sum
(
weighted_cost
)
token_num
=
layers
.
reduce_sum
(
weights
)
avg_cost
=
sum_cost
/
token_num
return
sum_cost
,
avg_cost
,
predict
return
sum_cost
,
avg_cost
,
predict
,
token_num
def
wrap_encoder
(
src_vocab_size
,
...
...
@@ -585,28 +608,30 @@ def wrap_encoder(src_vocab_size,
dropout_rate
,
src_pad_idx
,
pos_pad_idx
,
enc_input
_layer
s
=
None
):
enc_inputs
=
None
):
"""
The wrapper assembles together all needed layers for the encoder.
"""
if
enc_input
_layer
s
is
None
:
if
enc_inputs
is
None
:
# This is used to implement independent encoder program in inference.
src_word
,
src_pos
,
src_slf_attn_bias
,
slf_attn_pre_softmax_shape
,
\
slf_attn_post_softmax_shape
=
make_inputs
(
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
=
\
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
is_pos
=
True
,
slf_attn_bias_flag
=
True
,
src_attn_bias_flag
=
False
,
enc_output_flag
=
False
,
data_shape_flag
=
True
,
slf_attn_shape_flag
=
True
,
src_attn_shape_flag
=
False
)
else
:
src_word
,
src_pos
,
src_slf_attn_bias
,
slf_attn_pre_softmax_shape
,
\
slf_attn_post_softmax_shape
=
enc_input_layers
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
=
\
enc_inputs
enc_input
=
prepare_encoder
(
src_word
,
src_pos
,
...
...
@@ -614,7 +639,9 @@ def wrap_encoder(src_vocab_size,
d_model
,
src_pad_idx
,
max_length
,
dropout_rate
,
)
dropout_rate
,
pos_pad_idx
,
src_data_shape
,
)
enc_output
=
encoder
(
enc_input
,
src_slf_attn_bias
,
...
...
@@ -641,33 +668,33 @@ def wrap_decoder(trg_vocab_size,
dropout_rate
,
trg_pad_idx
,
pos_pad_idx
,
dec_input
_layer
s
=
None
,
dec_inputs
=
None
,
enc_output
=
None
):
"""
The wrapper assembles together all needed layers for the decoder.
"""
if
dec_input
_layer
s
is
None
:
if
dec_inputs
is
None
:
# This is used to implement independent decoder program in inference.
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post
_softmax_shape
,
\
s
rc_attn_pre_softmax_shape
,
src_attn_post
_softmax_shape
,
\
enc_output
=
make_inputs
(
trg_data_shape
,
slf_attn_pre
_softmax_shape
,
\
s
lf_attn_post_softmax_shape
,
src_attn_pre
_softmax_shape
,
\
src_attn_post_softmax_shape
,
enc_output
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
is_pos
=
True
,
slf_attn_bias_flag
=
True
,
src_attn_bias_flag
=
True
,
enc_output_flag
=
True
,
data_shape_flag
=
True
,
slf_attn_shape_flag
=
True
,
src_attn_shape_flag
=
True
)
else
:
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post
_softmax_shape
,
\
s
rc_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
=
\
dec_input_layer
s
trg_data_shape
,
slf_attn_pre
_softmax_shape
,
\
s
lf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
\
src_attn_post_softmax_shape
=
dec_input
s
dec_input
=
prepare_decoder
(
trg_word
,
...
...
@@ -676,7 +703,9 @@ def wrap_decoder(trg_vocab_size,
d_model
,
trg_pad_idx
,
max_length
,
dropout_rate
,
)
dropout_rate
,
pos_pad_idx
,
trg_data_shape
,
)
dec_output
=
decoder
(
dec_input
,
enc_output
,
...
...
@@ -700,5 +729,5 @@ def wrap_decoder(trg_vocab_size,
bias_attr
=
False
,
num_flatten_dims
=
2
),
shape
=
[
-
1
,
trg_vocab_size
],
act
=
"softmax"
if
dec_input
_layer
s
is
None
else
None
)
act
=
"softmax"
if
dec_inputs
is
None
else
None
)
return
predict
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
f14db82d
...
...
@@ -57,7 +57,7 @@ def pad_batch_data(insts,
def
prepare_batch_input
(
insts
,
input_data_names
,
src_pad_idx
,
trg_pad_idx
,
max_length
,
n_head
):
n_head
,
d_model
):
"""
Put all padded data needed by training into a dict.
"""
...
...
@@ -67,6 +67,10 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
[
inst
[
1
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
is_target
=
True
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
trg_max_len
,
1
]).
astype
(
"float32"
)
# These shape tensors are used in reshape_op.
src_data_shape
=
np
.
array
([
len
(
insts
),
src_max_len
,
d_model
],
dtype
=
"int32"
)
trg_data_shape
=
np
.
array
([
len
(
insts
),
trg_max_len
,
d_model
],
dtype
=
"int32"
)
src_slf_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
src_slf_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
src_slf_attn_post_softmax_shape
=
np
.
array
(
...
...
@@ -79,17 +83,19 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
[
-
1
,
trg_src_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
trg_src_attn_post_softmax_shape
=
np
.
array
(
trg_src_attn_bias
.
shape
,
dtype
=
"int32"
)
lbl_word
=
pad_batch_data
([
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
False
,
False
,
False
,
False
)
lbl_weight
=
(
lbl_word
!=
trg_pad_idx
).
astype
(
"float32"
).
reshape
([
-
1
,
1
])
input_dict
=
dict
(
zip
(
input_data_names
,
[
src_word
,
src_pos
,
src_slf_attn_bias
,
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
,
src_slf_attn_pre_softmax_shape
,
src_slf_attn_post_softmax_shape
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
trg_
slf_attn_pre_softmax_shape
,
trg_slf_attn_post
_softmax_shape
,
trg_s
rc_attn_pre_softmax_shape
,
trg_src_attn_post
_softmax_shape
,
lbl_word
,
lbl_weight
trg_
data_shape
,
trg_slf_attn_pre
_softmax_shape
,
trg_s
lf_attn_post_softmax_shape
,
trg_src_attn_pre
_softmax_shape
,
trg_src_attn_post_softmax_shape
,
lbl_word
,
lbl_weight
]))
return
input_dict
...
...
@@ -98,7 +104,7 @@ def main():
place
=
fluid
.
CUDAPlace
(
0
)
if
TrainTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
sum_cost
,
avg_cost
,
predict
=
transformer
(
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
ModelHyperParams
.
src_vocab_size
+
1
,
ModelHyperParams
.
trg_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
...
...
@@ -134,21 +140,24 @@ def main():
batch_size
=
TrainTaskConfig
.
batch_size
)
def
test
(
exe
):
test_
sum_costs
=
[]
test_
avg_costs
=
[]
test_
total_cost
=
0
test_
total_token
=
0
for
batch_id
,
data
in
enumerate
(
val_data
()):
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
continue
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
)
test_sum_cost
,
test_avg_cost
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
sum_cost
,
avg_cost
])
test_sum_costs
.
append
(
test_sum_cost
)
test_avg_costs
.
append
(
test_avg_cost
)
return
np
.
mean
(
test_sum_costs
),
np
.
mean
(
test_avg_costs
)
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
test_sum_cost
,
test_token_num
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
sum_cost
,
token_num
],
use_program_cache
=
True
)
test_total_cost
+=
test_sum_cost
test_total_token
+=
test_token_num
test_avg_cost
=
test_total_cost
/
test_total_token
test_ppl
=
np
.
exp
([
min
(
test_avg_cost
,
100
)])
return
test_avg_cost
,
test_ppl
# Initialize the parameters.
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
...
...
@@ -162,15 +171,11 @@ def main():
for
pass_id
in
xrange
(
TrainTaskConfig
.
pass_num
):
pass_start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_data
()):
# The current program desc is coupled with batch_size, thus all
# mini-batches must have the same number of instances currently.
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
continue
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
)
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
lr_scheduler
.
update_learning_rate
(
data_input
)
outs
=
exe
.
run
(
fluid
.
framework
.
default_main_program
(),
feed
=
data_input
,
...
...
@@ -181,13 +186,11 @@ def main():
(
pass_id
,
batch_id
,
sum_cost_val
,
avg_cost_val
,
np
.
exp
([
min
(
avg_cost_val
[
0
],
100
)])))
# Validate and save the model for inference.
val_
sum_cost
,
val_avg_cost
=
test
(
exe
)
val_
avg_cost
,
val_ppl
=
test
(
exe
)
pass_end_time
=
time
.
time
()
time_consumed
=
pass_end_time
-
pass_start_time
print
(
"epoch: %d, val sum loss: %f, val avg loss: %f, val ppl: %f, "
"consumed %fs"
%
(
pass_id
,
val_sum_cost
,
val_avg_cost
,
np
.
exp
([
min
(
val_avg_cost
,
100
)]),
time_consumed
))
print
(
"epoch: %d, val avg loss: %f, val ppl: %f, "
"consumed %fs"
%
(
pass_id
,
val_avg_cost
,
val_ppl
,
time_consumed
))
fluid
.
io
.
save_inference_model
(
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"pass_"
+
str
(
pass_id
)
+
".infer.model"
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录