Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e8726492
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e8726492
编写于
4月 05, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multi-scale crop for TSM.
上级
99dcaf65
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
177 addition
and
111 deletion
+177
-111
PaddleCV/video/datareader/kinetics_reader.py
PaddleCV/video/datareader/kinetics_reader.py
+177
-111
未找到文件。
PaddleCV/video/datareader/kinetics_reader.py
浏览文件 @
e8726492
...
@@ -74,7 +74,7 @@ class KineticsReader(DataReader):
...
@@ -74,7 +74,7 @@ class KineticsReader(DataReader):
self
.
filelist
=
cfg
[
mode
.
upper
()][
'filelist'
]
self
.
filelist
=
cfg
[
mode
.
upper
()][
'filelist'
]
def
create_reader
(
self
):
def
create_reader
(
self
):
_reader
=
_reader_creator
(
self
.
filelist
,
self
.
mode
,
seg_num
=
self
.
seg_num
,
seglen
=
self
.
seglen
,
\
_reader
=
self
.
_reader_creator
(
self
.
filelist
,
self
.
mode
,
seg_num
=
self
.
seg_num
,
seglen
=
self
.
seglen
,
\
short_size
=
self
.
short_size
,
target_size
=
self
.
target_size
,
\
short_size
=
self
.
short_size
,
target_size
=
self
.
target_size
,
\
img_mean
=
self
.
img_mean
,
img_std
=
self
.
img_std
,
\
img_mean
=
self
.
img_mean
,
img_std
=
self
.
img_std
,
\
shuffle
=
(
self
.
mode
==
'train'
),
\
shuffle
=
(
self
.
mode
==
'train'
),
\
...
@@ -94,117 +94,183 @@ class KineticsReader(DataReader):
...
@@ -94,117 +94,183 @@ class KineticsReader(DataReader):
return
_batch_reader
return
_batch_reader
def
_reader_creator
(
pickle_list
,
def
_reader_creator
(
self
,
mode
,
pickle_list
,
seg_num
,
mode
,
seglen
,
seg_num
,
short_size
,
seglen
,
target_size
,
short_size
,
img_mean
,
target_size
,
img_std
,
img_mean
,
shuffle
=
False
,
img_std
,
num_threads
=
1
,
shuffle
=
False
,
buf_size
=
1024
,
num_threads
=
1
,
format
=
'pkl'
):
buf_size
=
1024
,
def
reader
():
format
=
'pkl'
):
with
open
(
pickle_list
)
as
flist
:
def
decode_mp4
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
lines
=
[
line
.
strip
()
for
line
in
flist
]
img_std
):
if
shuffle
:
sample
=
sample
[
0
].
split
(
' '
)
random
.
shuffle
(
lines
)
mp4_path
=
sample
[
0
]
for
line
in
lines
:
# when infer, we store vid as label
pickle_path
=
line
.
strip
()
label
=
int
(
sample
[
1
])
yield
[
pickle_path
]
try
:
imgs
=
mp4_loader
(
mp4_path
,
seg_num
,
seglen
,
mode
)
if
format
==
'pkl'
:
if
len
(
imgs
)
<
1
:
decode_func
=
decode_pickle
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
mp4_path
,
elif
format
==
'mp4'
:
len
(
imgs
)))
decode_func
=
decode_mp4
return
None
,
None
else
:
except
:
raise
"Not implemented format {}"
.
format
(
format
)
logger
.
error
(
'Error when loading {}'
.
format
(
mp4_path
))
return
None
,
None
mapper
=
functools
.
partial
(
decode_func
,
return
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
\
mode
=
mode
,
short_size
,
target_size
,
img_mean
,
img_std
)
seg_num
=
seg_num
,
seglen
=
seglen
,
short_size
=
short_size
,
def
decode_pickle
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
target_size
=
target_size
,
img_mean
,
img_std
):
img_mean
=
img_mean
,
pickle_path
=
sample
[
0
]
img_std
=
img_std
)
try
:
if
python_ver
<
(
3
,
0
):
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
num_threads
,
buf_size
)
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
))
else
:
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
),
encoding
=
'bytes'
)
def
decode_mp4
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
vid
,
label
,
frames
=
data_loaded
sample
=
sample
[
0
].
split
(
' '
)
if
len
(
frames
)
<
1
:
mp4_path
=
sample
[
0
]
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
pickle_path
,
# when infer, we store vid as label
len
(
frames
)))
label
=
int
(
sample
[
1
])
return
None
,
None
try
:
except
:
imgs
=
mp4_loader
(
mp4_path
,
seg_num
,
seglen
,
mode
)
logger
.
info
(
'Error when loading {}'
.
format
(
pickle_path
))
if
len
(
imgs
)
<
1
:
return
None
,
None
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
mp4_path
,
len
(
imgs
)))
if
mode
==
'train'
or
mode
==
'valid'
or
mode
==
'test'
:
return
None
,
None
ret_label
=
label
except
:
elif
mode
==
'infer'
:
logger
.
error
(
'Error when loading {}'
.
format
(
mp4_path
))
ret_label
=
vid
return
None
,
None
imgs
=
video_loader
(
frames
,
seg_num
,
seglen
,
mode
)
return
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
\
return
imgs_transform
(
imgs
,
ret_label
,
mode
,
seg_num
,
seglen
,
\
short_size
,
target_size
,
img_mean
,
img_std
)
short_size
,
target_size
,
img_mean
,
img_std
)
def
decode_pickle
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
def
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
img_mean
,
img_std
):
pickle_path
=
sample
[
0
]
imgs
=
group_scale
(
imgs
,
short_size
)
try
:
if
python_ver
<
(
3
,
0
):
if
mode
==
'train'
:
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
))
if
self
.
name
==
"TSM"
:
imgs
=
group_multi_scale_crop
(
imgs
,
short_size
)
imgs
=
group_random_crop
(
imgs
,
target_size
)
imgs
=
group_random_flip
(
imgs
)
else
:
imgs
=
group_center_crop
(
imgs
,
target_size
)
np_imgs
=
(
np
.
array
(
imgs
[
0
]).
astype
(
'float32'
).
transpose
(
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
for
i
in
range
(
len
(
imgs
)
-
1
):
img
=
(
np
.
array
(
imgs
[
i
+
1
]).
astype
(
'float32'
).
transpose
(
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
np_imgs
=
np
.
concatenate
((
np_imgs
,
img
))
imgs
=
np_imgs
imgs
-=
img_mean
imgs
/=
img_std
imgs
=
np
.
reshape
(
imgs
,
(
seg_num
,
seglen
*
3
,
target_size
,
target_size
))
return
imgs
,
label
def
reader
():
with
open
(
pickle_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
random
.
shuffle
(
lines
)
for
line
in
lines
:
pickle_path
=
line
.
strip
()
yield
[
pickle_path
]
if
format
==
'pkl'
:
decode_func
=
decode_pickle
elif
format
==
'mp4'
:
decode_func
=
decode_mp4
else
:
else
:
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
),
encoding
=
'bytes'
)
raise
"Not implemented format {}"
.
format
(
format
)
vid
,
label
,
frames
=
data_loaded
mapper
=
functools
.
partial
(
if
len
(
frames
)
<
1
:
decode_func
,
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
pickle_path
,
mode
=
mode
,
len
(
frames
)))
seg_num
=
seg_num
,
return
None
,
None
seglen
=
seglen
,
except
:
short_size
=
short_size
,
logger
.
info
(
'Error when loading {}'
.
format
(
pickle_path
))
target_size
=
target_size
,
return
None
,
None
img_mean
=
img_mean
,
img_std
=
img_std
)
if
mode
==
'train'
or
mode
==
'valid'
or
mode
==
'test'
:
ret_label
=
label
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
num_threads
,
buf_size
)
elif
mode
==
'infer'
:
ret_label
=
vid
def
group_multi_scale_crop
(
img_group
,
target_size
,
scales
=
None
,
\
imgs
=
video_loader
(
frames
,
seg_num
,
seglen
,
mode
)
max_distort
=
1
,
fix_crop
=
True
,
more_fix_crop
=
True
):
return
imgs_transform
(
imgs
,
ret_label
,
mode
,
seg_num
,
seglen
,
\
scales
=
scales
if
scales
is
not
None
else
[
1
,
.
875
,
.
75
,
.
66
]
short_size
,
target_size
,
img_mean
,
img_std
)
input_size
=
[
target_size
,
target_size
]
im_size
=
img_group
[
0
].
size
def
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
# get random crop offset
imgs
=
group_scale
(
imgs
,
short_size
)
def
_sample_crop_size
(
im_size
):
image_w
,
image_h
=
im_size
[
0
],
im_size
[
1
]
if
mode
==
'train'
:
imgs
=
group_random_crop
(
imgs
,
target_size
)
base_size
=
min
(
image_w
,
image_h
)
imgs
=
group_random_flip
(
imgs
)
crop_sizes
=
[
int
(
base_size
*
x
)
for
x
in
scales
]
else
:
crop_h
=
[
input_size
[
1
]
if
abs
(
x
-
input_size
[
1
])
<
3
else
x
for
x
in
crop_sizes
]
imgs
=
group_center_crop
(
imgs
,
target_size
)
crop_w
=
[
input_size
[
0
]
if
abs
(
x
-
input_size
[
0
])
<
3
else
x
for
x
in
crop_sizes
]
np_imgs
=
(
np
.
array
(
imgs
[
0
]).
astype
(
'float32'
).
transpose
(
pairs
=
[]
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
for
i
,
h
in
enumerate
(
crop_h
):
for
i
in
range
(
len
(
imgs
)
-
1
):
for
j
,
w
in
enumerate
(
crop_w
):
img
=
(
np
.
array
(
imgs
[
i
+
1
]).
astype
(
'float32'
).
transpose
(
if
abs
(
i
-
j
)
<=
max_distort
:
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
pairs
.
append
((
w
,
h
))
np_imgs
=
np
.
concatenate
((
np_imgs
,
img
))
imgs
=
np_imgs
crop_pair
=
random
.
choice
(
pairs
)
imgs
-=
img_mean
if
not
fix_crop
:
imgs
/=
img_std
w_offset
=
random
.
randint
(
0
,
image_w
-
crop_pair
[
0
])
imgs
=
np
.
reshape
(
imgs
,
(
seg_num
,
seglen
*
3
,
target_size
,
target_size
))
h_offset
=
random
.
randint
(
0
,
image_h
-
crop_pair
[
1
])
else
:
return
imgs
,
label
w_step
=
(
image_w
-
crop_pair
[
0
])
/
4
h_step
=
(
image_h
-
crop_pair
[
1
])
/
4
ret
=
list
()
ret
.
append
((
0
,
0
))
# upper left
if
w_step
!=
0
:
ret
.
append
((
4
*
w_step
,
0
))
# upper right
if
h_step
!=
0
:
ret
.
append
((
0
,
4
*
h_step
))
# lower left
if
h_step
!=
0
and
w_step
!=
0
:
ret
.
append
((
4
*
w_step
,
4
*
h_step
))
# lower right
if
h_step
!=
0
or
w_step
!=
0
:
ret
.
append
((
2
*
w_step
,
2
*
h_step
))
# center
if
more_fix_crop
:
ret
.
append
((
0
,
2
*
h_step
))
# center left
ret
.
append
((
4
*
w_step
,
2
*
h_step
))
# center right
ret
.
append
((
2
*
w_step
,
4
*
h_step
))
# lower center
ret
.
append
((
2
*
w_step
,
0
*
h_step
))
# upper center
ret
.
append
((
1
*
w_step
,
1
*
h_step
))
# upper left quarter
ret
.
append
((
3
*
w_step
,
1
*
h_step
))
# upper right quarter
ret
.
append
((
1
*
w_step
,
3
*
h_step
))
# lower left quarter
ret
.
append
((
3
*
w_step
,
3
*
h_step
))
# lower righ quarter
w_offset
,
h_offset
=
random
.
choice
(
ret
)
return
crop_pair
[
0
],
crop_pair
[
1
],
w_offset
,
h_offset
crop_w
,
crop_h
,
offset_w
,
offset_h
=
_sample_crop_size
(
im_size
)
crop_img_group
=
[
img
.
crop
((
offset_w
,
offset_h
,
offset_w
+
crop_w
,
offset_h
+
crop_h
))
for
img
in
img_group
]
ret_img_group
=
[
img
.
resize
((
input_size
[
0
],
input_size
[
1
]),
Image
.
BILINEAR
)
for
img
in
crop_img_group
]
return
ret_img_group
def
group_random_crop
(
img_group
,
target_size
):
def
group_random_crop
(
img_group
,
target_size
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录