Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e8726492
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e8726492
编写于
4月 05, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multi-scale crop for TSM.
上级
99dcaf65
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
177 addition
and
111 deletion
+177
-111
PaddleCV/video/datareader/kinetics_reader.py
PaddleCV/video/datareader/kinetics_reader.py
+177
-111
未找到文件。
PaddleCV/video/datareader/kinetics_reader.py
浏览文件 @
e8726492
...
...
@@ -74,7 +74,7 @@ class KineticsReader(DataReader):
self
.
filelist
=
cfg
[
mode
.
upper
()][
'filelist'
]
def
create_reader
(
self
):
_reader
=
_reader_creator
(
self
.
filelist
,
self
.
mode
,
seg_num
=
self
.
seg_num
,
seglen
=
self
.
seglen
,
\
_reader
=
self
.
_reader_creator
(
self
.
filelist
,
self
.
mode
,
seg_num
=
self
.
seg_num
,
seglen
=
self
.
seglen
,
\
short_size
=
self
.
short_size
,
target_size
=
self
.
target_size
,
\
img_mean
=
self
.
img_mean
,
img_std
=
self
.
img_std
,
\
shuffle
=
(
self
.
mode
==
'train'
),
\
...
...
@@ -94,117 +94,183 @@ class KineticsReader(DataReader):
return
_batch_reader
def
_reader_creator
(
pickle_list
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
,
shuffle
=
False
,
num_threads
=
1
,
buf_size
=
1024
,
format
=
'pkl'
):
def
reader
():
with
open
(
pickle_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
random
.
shuffle
(
lines
)
for
line
in
lines
:
pickle_path
=
line
.
strip
()
yield
[
pickle_path
]
if
format
==
'pkl'
:
decode_func
=
decode_pickle
elif
format
==
'mp4'
:
decode_func
=
decode_mp4
else
:
raise
"Not implemented format {}"
.
format
(
format
)
mapper
=
functools
.
partial
(
decode_func
,
mode
=
mode
,
seg_num
=
seg_num
,
seglen
=
seglen
,
short_size
=
short_size
,
target_size
=
target_size
,
img_mean
=
img_mean
,
img_std
=
img_std
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
num_threads
,
buf_size
)
def
decode_mp4
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
sample
=
sample
[
0
].
split
(
' '
)
mp4_path
=
sample
[
0
]
# when infer, we store vid as label
label
=
int
(
sample
[
1
])
try
:
imgs
=
mp4_loader
(
mp4_path
,
seg_num
,
seglen
,
mode
)
if
len
(
imgs
)
<
1
:
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
mp4_path
,
len
(
imgs
)))
return
None
,
None
except
:
logger
.
error
(
'Error when loading {}'
.
format
(
mp4_path
))
return
None
,
None
return
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
\
short_size
,
target_size
,
img_mean
,
img_std
)
def
decode_pickle
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
pickle_path
=
sample
[
0
]
try
:
if
python_ver
<
(
3
,
0
):
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
))
def
_reader_creator
(
self
,
pickle_list
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
,
shuffle
=
False
,
num_threads
=
1
,
buf_size
=
1024
,
format
=
'pkl'
):
def
decode_mp4
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
sample
=
sample
[
0
].
split
(
' '
)
mp4_path
=
sample
[
0
]
# when infer, we store vid as label
label
=
int
(
sample
[
1
])
try
:
imgs
=
mp4_loader
(
mp4_path
,
seg_num
,
seglen
,
mode
)
if
len
(
imgs
)
<
1
:
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
mp4_path
,
len
(
imgs
)))
return
None
,
None
except
:
logger
.
error
(
'Error when loading {}'
.
format
(
mp4_path
))
return
None
,
None
return
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
\
short_size
,
target_size
,
img_mean
,
img_std
)
def
decode_pickle
(
sample
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
pickle_path
=
sample
[
0
]
try
:
if
python_ver
<
(
3
,
0
):
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
))
else
:
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
),
encoding
=
'bytes'
)
vid
,
label
,
frames
=
data_loaded
if
len
(
frames
)
<
1
:
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
pickle_path
,
len
(
frames
)))
return
None
,
None
except
:
logger
.
info
(
'Error when loading {}'
.
format
(
pickle_path
))
return
None
,
None
if
mode
==
'train'
or
mode
==
'valid'
or
mode
==
'test'
:
ret_label
=
label
elif
mode
==
'infer'
:
ret_label
=
vid
imgs
=
video_loader
(
frames
,
seg_num
,
seglen
,
mode
)
return
imgs_transform
(
imgs
,
ret_label
,
mode
,
seg_num
,
seglen
,
\
short_size
,
target_size
,
img_mean
,
img_std
)
def
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
imgs
=
group_scale
(
imgs
,
short_size
)
if
mode
==
'train'
:
if
self
.
name
==
"TSM"
:
imgs
=
group_multi_scale_crop
(
imgs
,
short_size
)
imgs
=
group_random_crop
(
imgs
,
target_size
)
imgs
=
group_random_flip
(
imgs
)
else
:
imgs
=
group_center_crop
(
imgs
,
target_size
)
np_imgs
=
(
np
.
array
(
imgs
[
0
]).
astype
(
'float32'
).
transpose
(
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
for
i
in
range
(
len
(
imgs
)
-
1
):
img
=
(
np
.
array
(
imgs
[
i
+
1
]).
astype
(
'float32'
).
transpose
(
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
np_imgs
=
np
.
concatenate
((
np_imgs
,
img
))
imgs
=
np_imgs
imgs
-=
img_mean
imgs
/=
img_std
imgs
=
np
.
reshape
(
imgs
,
(
seg_num
,
seglen
*
3
,
target_size
,
target_size
))
return
imgs
,
label
def
reader
():
with
open
(
pickle_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
random
.
shuffle
(
lines
)
for
line
in
lines
:
pickle_path
=
line
.
strip
()
yield
[
pickle_path
]
if
format
==
'pkl'
:
decode_func
=
decode_pickle
elif
format
==
'mp4'
:
decode_func
=
decode_mp4
else
:
data_loaded
=
pickle
.
load
(
open
(
pickle_path
,
'rb'
),
encoding
=
'bytes'
)
vid
,
label
,
frames
=
data_loaded
if
len
(
frames
)
<
1
:
logger
.
error
(
'{} frame length {} less than 1.'
.
format
(
pickle_path
,
len
(
frames
)))
return
None
,
None
except
:
logger
.
info
(
'Error when loading {}'
.
format
(
pickle_path
))
return
None
,
None
if
mode
==
'train'
or
mode
==
'valid'
or
mode
==
'test'
:
ret_label
=
label
elif
mode
==
'infer'
:
ret_label
=
vid
imgs
=
video_loader
(
frames
,
seg_num
,
seglen
,
mode
)
return
imgs_transform
(
imgs
,
ret_label
,
mode
,
seg_num
,
seglen
,
\
short_size
,
target_size
,
img_mean
,
img_std
)
def
imgs_transform
(
imgs
,
label
,
mode
,
seg_num
,
seglen
,
short_size
,
target_size
,
img_mean
,
img_std
):
imgs
=
group_scale
(
imgs
,
short_size
)
if
mode
==
'train'
:
imgs
=
group_random_crop
(
imgs
,
target_size
)
imgs
=
group_random_flip
(
imgs
)
else
:
imgs
=
group_center_crop
(
imgs
,
target_size
)
np_imgs
=
(
np
.
array
(
imgs
[
0
]).
astype
(
'float32'
).
transpose
(
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
for
i
in
range
(
len
(
imgs
)
-
1
):
img
=
(
np
.
array
(
imgs
[
i
+
1
]).
astype
(
'float32'
).
transpose
(
(
2
,
0
,
1
))).
reshape
(
1
,
3
,
target_size
,
target_size
)
/
255
np_imgs
=
np
.
concatenate
((
np_imgs
,
img
))
imgs
=
np_imgs
imgs
-=
img_mean
imgs
/=
img_std
imgs
=
np
.
reshape
(
imgs
,
(
seg_num
,
seglen
*
3
,
target_size
,
target_size
))
return
imgs
,
label
raise
"Not implemented format {}"
.
format
(
format
)
mapper
=
functools
.
partial
(
decode_func
,
mode
=
mode
,
seg_num
=
seg_num
,
seglen
=
seglen
,
short_size
=
short_size
,
target_size
=
target_size
,
img_mean
=
img_mean
,
img_std
=
img_std
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
num_threads
,
buf_size
)
def
group_multi_scale_crop
(
img_group
,
target_size
,
scales
=
None
,
\
max_distort
=
1
,
fix_crop
=
True
,
more_fix_crop
=
True
):
scales
=
scales
if
scales
is
not
None
else
[
1
,
.
875
,
.
75
,
.
66
]
input_size
=
[
target_size
,
target_size
]
im_size
=
img_group
[
0
].
size
# get random crop offset
def
_sample_crop_size
(
im_size
):
image_w
,
image_h
=
im_size
[
0
],
im_size
[
1
]
base_size
=
min
(
image_w
,
image_h
)
crop_sizes
=
[
int
(
base_size
*
x
)
for
x
in
scales
]
crop_h
=
[
input_size
[
1
]
if
abs
(
x
-
input_size
[
1
])
<
3
else
x
for
x
in
crop_sizes
]
crop_w
=
[
input_size
[
0
]
if
abs
(
x
-
input_size
[
0
])
<
3
else
x
for
x
in
crop_sizes
]
pairs
=
[]
for
i
,
h
in
enumerate
(
crop_h
):
for
j
,
w
in
enumerate
(
crop_w
):
if
abs
(
i
-
j
)
<=
max_distort
:
pairs
.
append
((
w
,
h
))
crop_pair
=
random
.
choice
(
pairs
)
if
not
fix_crop
:
w_offset
=
random
.
randint
(
0
,
image_w
-
crop_pair
[
0
])
h_offset
=
random
.
randint
(
0
,
image_h
-
crop_pair
[
1
])
else
:
w_step
=
(
image_w
-
crop_pair
[
0
])
/
4
h_step
=
(
image_h
-
crop_pair
[
1
])
/
4
ret
=
list
()
ret
.
append
((
0
,
0
))
# upper left
if
w_step
!=
0
:
ret
.
append
((
4
*
w_step
,
0
))
# upper right
if
h_step
!=
0
:
ret
.
append
((
0
,
4
*
h_step
))
# lower left
if
h_step
!=
0
and
w_step
!=
0
:
ret
.
append
((
4
*
w_step
,
4
*
h_step
))
# lower right
if
h_step
!=
0
or
w_step
!=
0
:
ret
.
append
((
2
*
w_step
,
2
*
h_step
))
# center
if
more_fix_crop
:
ret
.
append
((
0
,
2
*
h_step
))
# center left
ret
.
append
((
4
*
w_step
,
2
*
h_step
))
# center right
ret
.
append
((
2
*
w_step
,
4
*
h_step
))
# lower center
ret
.
append
((
2
*
w_step
,
0
*
h_step
))
# upper center
ret
.
append
((
1
*
w_step
,
1
*
h_step
))
# upper left quarter
ret
.
append
((
3
*
w_step
,
1
*
h_step
))
# upper right quarter
ret
.
append
((
1
*
w_step
,
3
*
h_step
))
# lower left quarter
ret
.
append
((
3
*
w_step
,
3
*
h_step
))
# lower righ quarter
w_offset
,
h_offset
=
random
.
choice
(
ret
)
return
crop_pair
[
0
],
crop_pair
[
1
],
w_offset
,
h_offset
crop_w
,
crop_h
,
offset_w
,
offset_h
=
_sample_crop_size
(
im_size
)
crop_img_group
=
[
img
.
crop
((
offset_w
,
offset_h
,
offset_w
+
crop_w
,
offset_h
+
crop_h
))
for
img
in
img_group
]
ret_img_group
=
[
img
.
resize
((
input_size
[
0
],
input_size
[
1
]),
Image
.
BILINEAR
)
for
img
in
crop_img_group
]
return
ret_img_group
def
group_random_crop
(
img_group
,
target_size
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录