未验证 提交 da5c04a6 编写于 作者: K Kaipeng Deng 提交者: GitHub

use new API (#4606)

上级 82532bf0
......@@ -200,8 +200,7 @@ def pointnet_fp_module(unknown, known, unknown_feats, known_feats, mlp, bn=True,
dist.stop_gradient = True
idx.stop_gradient = True
dist = fluid.layers.sqrt(dist)
ones = fluid.layers.fill_constant_batch_size_like(dist, dist.shape, dist.dtype, 1)
dist_recip = ones / (dist + 1e-8); # 1.0 / dist
dist_recip = 1.0 / (dist + 1e-8); # 1.0 / dist
norm = fluid.layers.reduce_sum(dist_recip, dim=-1, keep_dim=True)
weight = dist_recip / norm
weight.stop_gradient = True
......
......@@ -93,8 +93,8 @@ def get_reg_loss(pred_reg, reg_label, fg_mask, point_num, loc_scope,
x_res_norm_label = x_res_label / loc_bin_size
z_res_norm_label = z_res_label / loc_bin_size
x_bin_onehot = fluid.layers.one_hot(x_bin_label, depth=per_loc_bin_num)
z_bin_onehot = fluid.layers.one_hot(z_bin_label, depth=per_loc_bin_num)
x_bin_onehot = fluid.one_hot(x_bin_label[:, 0], depth=per_loc_bin_num)
z_bin_onehot = fluid.one_hot(z_bin_label[:, 0], depth=per_loc_bin_num)
loss_x_res = fluid.layers.smooth_l1(fluid.layers.reduce_sum(pred_reg[:, x_res_l: x_res_r] * x_bin_onehot, dim=1, keep_dim=True), x_res_norm_label)
loss_x_res = fluid.layers.reduce_mean(loss_x_res * fg_mask) * fg_scale
......@@ -115,7 +115,7 @@ def get_reg_loss(pred_reg, reg_label, fg_mask, point_num, loc_scope,
y_res_label = y_shift - (fluid.layers.cast(y_bin_label, dtype=y_shift.dtype) * loc_y_bin_size + loc_y_bin_size / 2.)
y_res_norm_label = y_res_label / loc_y_bin_size
y_bin_onehot = fluid.layers.one_hot(y_bin_label, depth=per_loc_bin_num)
y_bin_onehot = fluid.one_hot(y_bin_label[:, 0], depth=per_loc_bin_num)
loss_y_bin = fluid.layers.cross_entropy(pred_reg[:, y_bin_l: y_bin_r], y_bin_label)
loss_y_bin = fluid.layers.reduce_mean(loss_y_bin * fg_mask) * fg_scale
......@@ -169,7 +169,7 @@ def get_reg_loss(pred_reg, reg_label, fg_mask, point_num, loc_scope,
ry_res_label = shift_angle - (fluid.layers.cast(ry_bin_label, dtype=shift_angle.dtype) * angle_per_class + angle_per_class / 2)
ry_res_norm_label = ry_res_label / (angle_per_class / 2)
ry_bin_onehot = fluid.layers.one_hot(ry_bin_label, depth=num_head_bin)
ry_bin_onehot = fluid.one_hot(ry_bin_label[:, 0], depth=num_head_bin)
loss_ry_bin = fluid.layers.softmax_with_cross_entropy(pred_reg[:, ry_bin_l:ry_bin_r], ry_bin_label)
loss_ry_bin = fluid.layers.reduce_mean(loss_ry_bin * fg_mask) * fg_scale
loss_ry_res = fluid.layers.smooth_l1(fluid.layers.reduce_sum(pred_reg[:, ry_res_l: ry_res_r] * ry_bin_onehot, dim=1, keep_dim=True), ry_res_norm_label)
......
......@@ -184,8 +184,7 @@ def pointnet_fp_module(unknown, known, unknown_feats, known_feats, mlp, bn=True,
dist.stop_gradient = True
idx.stop_gradient = True
dist = fluid.layers.sqrt(dist)
ones = fluid.layers.fill_constant_batch_size_like(dist, dist.shape, dist.dtype, 1)
dist_recip = ones / (dist + 1e-8); # 1.0 / dist
dist_recip = 1.0 / (dist + 1e-8); # 1.0 / dist
norm = fluid.layers.reduce_sum(dist_recip, dim=-1, keep_dim=True)
weight = dist_recip / norm
weight.stop_gradient = True
......
......@@ -54,21 +54,31 @@ def cosine_warmup_decay(learning_rate, betas, warmup_factor, decay_factor,
warmup_step_var = fluid.layers.fill_constant(
shape=[1], dtype='float32', value=float(warmup_step), force_cpu=True)
with control_flow.Switch() as switch:
with switch.case(global_step < warmup_step_var):
cur_lr = annealing_cos(warmup_start_lr, learning_rate,
global_step / warmup_step_var)
fluid.layers.assign(cur_lr, lr)
cur_beta1 = annealing_cos(betas[0], betas[1],
global_step / warmup_step_var)
fluid.layers.assign(cur_beta1, beta1)
with switch.case(global_step >= warmup_step_var):
cur_lr = annealing_cos(learning_rate, decay_end_lr,
(global_step - warmup_step_var) / (total_step - warmup_step))
fluid.layers.assign(cur_lr, lr)
cur_beta1 = annealing_cos(betas[1], betas[0],
(global_step - warmup_step_var) / (total_step - warmup_step))
fluid.layers.assign(cur_beta1, beta1)
warmup_pred = global_step < warmup_step_var
decay_pred = global_step >= warmup_step_var
# learning rate warmup and decay
def warmup_lr():
return annealing_cos(warmup_start_lr, learning_rate,
global_step / warmup_step_var)
def decay_lr():
return annealing_cos(learning_rate, decay_end_lr,
(global_step - warmup_step_var) / (total_step - warmup_step))
lr = fluid.layers.case(pred_fn_pairs=[(warmup_pred, warmup_lr),
(decay_pred, decay_lr)])
# Adam beta1 warmup and decay
def warmup_beta1():
return annealing_cos(betas[0], betas[1],
global_step / warmup_step_var)
def decay_beta1():
return annealing_cos(betas[0], betas[1],
global_step / warmup_step_var)
beta1 = fluid.layers.case(pred_fn_pairs=[(warmup_pred, warmup_beta1),
(decay_pred, decay_beta1)])
return lr, beta1
......@@ -96,11 +106,11 @@ def optimize(loss,
raise ValueError("Unkown learning rate scheduler, should be "
"'cosine_warmup_decay'")
grad_clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=clip_norm)
optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr,
beta1=scheduled_beta1,
beta2=beta2)
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=clip_norm))
beta2=beta2,
grad_clip=grad_clip)
param_list = dict()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册