未验证 提交 82532bf0 编写于 作者: X Xing Wu 提交者: GitHub

update lac and seq2seq to api_1.8 (#4604)

* update lac and seq2seq to api_1.8

* update lac and seq2seq to api_1.8

* update lac and seq2seq to api_1.8
上级 56cfb006
......@@ -105,15 +105,15 @@ def create_pyreader(args,
# create lac pyreader
if mode == 'train':
pyreader.set_sample_list_generator(
fluid.io.batch(
fluid.io.shuffle(
paddle.batch(
paddle.reader.shuffle(
reader.file_reader(file_name),
buf_size=args.traindata_shuffle_buffer),
batch_size=args.batch_size / device_count),
places=place)
else:
pyreader.set_sample_list_generator(
fluid.io.batch(
paddle.batch(
reader.file_reader(
file_name, mode=mode),
batch_size=args.batch_size / device_count),
......
......@@ -116,11 +116,11 @@ def do_train(args):
feed_list=train_ret['feed_list'],
model="ernie",
place=place)
clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
optimizer = fluid.optimizer.Adam(
learning_rate=args.base_learning_rate)
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))
learning_rate=args.base_learning_rate,
grad_clip=clip)
optimizer.minimize(train_ret["avg_cost"])
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
......
......@@ -97,14 +97,14 @@ def main():
dropout=dropout)
loss = model.build_graph()
inference_program = train_program.clone(for_test=True)
fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=max_grad_norm))
clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=max_grad_norm)
lr = args.learning_rate
opt_type = args.optimizer
if opt_type == "sgd":
optimizer = fluid.optimizer.SGD(lr)
optimizer = fluid.optimizer.SGD(lr, grad_clip=clip)
elif opt_type == "adam":
optimizer = fluid.optimizer.Adam(lr)
optimizer = fluid.optimizer.Adam(lr, grad_clip=clip)
else:
print("only support [sgd|adam]")
raise Exception("opt type not support")
......
......@@ -229,7 +229,7 @@ class VAE(object):
# `sample_output_layer` samples an id from the logits distribution instead of argmax(logits)
# it will be used within BeamSearchDecoder
sample_output_layer = lambda x: layers.unsqueeze(layers.one_hot(
sample_output_layer = lambda x: layers.unsqueeze(fluid.one_hot(
layers.unsqueeze(
layers.sampling_id(
layers.softmax(
......
......@@ -89,9 +89,8 @@ def main():
inference_program = fluid.default_main_program().clone(
for_test=True)
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=max_grad_norm))
clip=fluid.clip.GradientClipByGlobalNorm(
clip_norm=max_grad_norm)
learning_rate = fluid.layers.create_global_var(
name="learning_rate",
......@@ -102,9 +101,9 @@ def main():
opt_type = args.optimizer
if opt_type == "sgd":
optimizer = fluid.optimizer.SGD(learning_rate)
optimizer = fluid.optimizer.SGD(learning_rate, grad_clip=clip)
elif opt_type == "adam":
optimizer = fluid.optimizer.Adam(learning_rate)
optimizer = fluid.optimizer.Adam(learning_rate, grad_clip=clip)
else:
print("only support [sgd|adam]")
raise Exception("opt type not support")
......@@ -272,7 +271,7 @@ def main():
(old_lr, new_lr))
dir_name = args.model_path + "/epoch_" + str(best_epoch_id)
fluid.io.load_params(exe, dir_name)
fluid.load(main_program, dir_name, exe)
decay_cnt += 1
if decay_cnt == max_decay:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册