Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
d91dab00
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d91dab00
编写于
6月 12, 2017
作者:
X
Xinghai Sun
提交者:
GitHub
6月 12, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #74 from qingqing01/ds2
Support variable input batch and SortaGrad.
上级
d67d362c
cb6da079
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
87 addition
and
76 deletion
+87
-76
deep_speech_2/audio_data_utils.py
deep_speech_2/audio_data_utils.py
+63
-35
deep_speech_2/train.py
deep_speech_2/train.py
+24
-41
未找到文件。
deep_speech_2/audio_data_utils.py
浏览文件 @
d91dab00
...
...
@@ -8,6 +8,7 @@ import json
import
random
import
soundfile
import
numpy
as
np
import
itertools
import
os
RANDOM_SEED
=
0
...
...
@@ -62,6 +63,7 @@ class DataGenerator(object):
self
.
__stride_ms__
=
stride_ms
self
.
__window_ms__
=
window_ms
self
.
__max_frequency__
=
max_frequency
self
.
__epoc__
=
0
self
.
__random__
=
random
.
Random
(
RANDOM_SEED
)
# load vocabulary (dictionary)
self
.
__vocab_dict__
,
self
.
__vocab_list__
=
\
...
...
@@ -245,10 +247,42 @@ class DataGenerator(object):
new_batch
.
append
((
padded_audio
,
text
))
return
new_batch
def
instance_reader_creator
(
self
,
manifest_path
,
sort_by_duration
=
True
,
shuffle
=
False
):
def
__batch_shuffle__
(
self
,
manifest
,
batch_size
):
"""
The instances have different lengths and they cannot be
combined into a single matrix multiplication. It usually
sorts the training examples by length and combines only
similarly-sized instances into minibatches, pads with
silence when necessary so that all instances in a batch
have the same length. This batch shuffle fuction is used
to make similarly-sized instances into minibatches and
make a batch-wise shuffle.
1. Sort the audio clips by duration.
2. Generate a random number `k`, k in [0, batch_size).
3. Randomly remove `k` instances in order to make different mini-batches,
then make minibatches and each minibatch size is batch_size.
4. Shuffle the minibatches.
:param manifest: manifest file.
:type manifest: list
:param batch_size: Batch size. This size is also used for generate
a random number for batch shuffle.
:type batch_size: int
:return: batch shuffled mainifest.
:rtype: list
"""
manifest
.
sort
(
key
=
lambda
x
:
x
[
"duration"
])
shift_len
=
self
.
__random__
.
randint
(
0
,
batch_size
-
1
)
batch_manifest
=
zip
(
*
[
iter
(
manifest
[
shift_len
:])]
*
batch_size
)
self
.
__random__
.
shuffle
(
batch_manifest
)
batch_manifest
=
list
(
sum
(
batch_manifest
,
()))
res_len
=
len
(
manifest
)
-
shift_len
-
len
(
batch_manifest
)
batch_manifest
.
extend
(
manifest
[
-
res_len
:])
batch_manifest
.
extend
(
manifest
[
0
:
shift_len
])
return
batch_manifest
def
instance_reader_creator
(
self
,
manifest
):
"""
Instance reader creator for audio data. Creat a callable function to
produce instances of data.
...
...
@@ -256,32 +290,13 @@ class DataGenerator(object):
Instance: a tuple of a numpy ndarray of audio spectrogram and a list of
tokenized and indexed transcription text.
:param manifest_path: Filepath of manifest for audio clip files.
:type manifest_path: basestring
:param sort_by_duration: Sort the audio clips by duration if set True
(for SortaGrad).
:type sort_by_duration: bool
:param shuffle: Shuffle the audio clips if set True.
:type shuffle: bool
:param manifest: Filepath of manifest for audio clip files.
:type manifest: basestring
:return: Data reader function.
:rtype: callable
"""
if
sort_by_duration
and
shuffle
:
sort_by_duration
=
False
logger
.
warn
(
"When shuffle set to true, "
"sort_by_duration is forced to set False."
)
def
reader
():
# read manifest
manifest
=
self
.
__read_manifest__
(
manifest_path
=
manifest_path
,
max_duration
=
self
.
__max_duration__
,
min_duration
=
self
.
__min_duration__
)
# sort (by duration) or shuffle manifest
if
sort_by_duration
:
manifest
.
sort
(
key
=
lambda
x
:
x
[
"duration"
])
if
shuffle
:
self
.
__random__
.
shuffle
(
manifest
)
# extract spectrogram feature
for
instance
in
manifest
:
spectrogram
=
self
.
__audio_featurize__
(
...
...
@@ -296,8 +311,8 @@ class DataGenerator(object):
batch_size
,
padding_to
=-
1
,
flatten
=
False
,
sort
_by_duration
=
Tru
e
,
shuffle
=
False
):
sort
agrad
=
Fals
e
,
batch_
shuffle
=
False
):
"""
Batch data reader creator for audio data. Creat a callable function to
produce batches of data.
...
...
@@ -317,20 +332,32 @@ class DataGenerator(object):
:param flatten: If set True, audio data will be flatten to be a 1-dim
ndarray. Otherwise, 2-dim ndarray. Default is False.
:type flatten: bool
:param sort_by_duration: Sort the audio clips by duration if set True
(for SortaGrad).
:type sort_by_duration: bool
:param shuffle: Shuffle the audio clips if set True.
:type shuffle: bool
:param sortagrad: Sort the audio clips by duration in the first epoc
if set True.
:type sortagrad: bool
:param batch_shuffle: Shuffle the audio clips if set True. It is
not a thorough instance-wise shuffle, but a
specific batch-wise shuffle. For more details,
please see `__batch_shuffle__` function.
:type batch_shuffle: bool
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
def
batch_reader
():
instance_reader
=
self
.
instance_reader_creator
(
# read manifest
manifest
=
self
.
__read_manifest__
(
manifest_path
=
manifest_path
,
sort_by_duration
=
sort_by_duration
,
shuffle
=
shuffle
)
max_duration
=
self
.
__max_duration__
,
min_duration
=
self
.
__min_duration__
)
# sort (by duration) or shuffle manifest
if
self
.
__epoc__
==
0
and
sortagrad
:
manifest
.
sort
(
key
=
lambda
x
:
x
[
"duration"
])
elif
batch_shuffle
:
manifest
=
self
.
__batch_shuffle__
(
manifest
,
batch_size
)
instance_reader
=
self
.
instance_reader_creator
(
manifest
)
batch
=
[]
for
instance
in
instance_reader
():
batch
.
append
(
instance
)
...
...
@@ -339,6 +366,7 @@ class DataGenerator(object):
batch
=
[]
if
len
(
batch
)
>
0
:
yield
self
.
__padding_batch__
(
batch
,
padding_to
,
flatten
)
self
.
__epoc__
+=
1
return
batch_reader
...
...
deep_speech_2/train.py
浏览文件 @
d91dab00
...
...
@@ -93,23 +93,27 @@ def train():
"""
DeepSpeech2 training.
"""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
normalizer_manifest_path
=
args
.
normalizer_manifest_path
,
normalizer_num_samples
=
200
,
max_duration
=
20.0
,
min_duration
=
0.0
,
stride_ms
=
10
,
window_ms
=
20
)
def
data_generator
():
return
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
normalizer_manifest_path
=
args
.
normalizer_manifest_path
,
normalizer_num_samples
=
200
,
max_duration
=
20.0
,
min_duration
=
0.0
,
stride_ms
=
10
,
window_ms
=
20
)
train_generator
=
data_generator
()
test_generator
=
data_generator
()
# create network config
dict_size
=
data_generator
.
vocabulary_size
()
dict_size
=
train_generator
.
vocabulary_size
()
# paddle.data_type.dense_array is used for variable batch input.
# the size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be set at each batch.
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
height
=
161
,
width
=
2000
,
type
=
paddle
.
data_type
.
dense_vector
(
322000
))
name
=
"audio_spectrogram"
,
type
=
paddle
.
data_type
.
dense_array
(
161
*
161
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
dict_size
))
...
...
@@ -136,28 +140,16 @@ def train():
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# prepare data reader
train_batch_reader_sortagrad
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
train_manifest_path
,
batch_size
=
args
.
batch_size
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
True
,
shuffle
=
False
)
train_batch_reader_nosortagrad
=
data_generator
.
batch_reader_creator
(
train_batch_reader
=
train_generator
.
batch_reader_creator
(
manifest_path
=
args
.
train_manifest_path
,
batch_size
=
args
.
batch_size
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
False
,
shuffle
=
True
)
test_batch_reader
=
data_generator
.
batch_reader_creator
(
sortagrad
=
True
if
args
.
init_model_path
is
None
else
False
,
batch_shuffle
=
True
)
test_batch_reader
=
test_generator
.
batch_reader_creator
(
manifest_path
=
args
.
dev_manifest_path
,
batch_size
=
args
.
batch_size
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
False
,
shuffle
=
False
)
feeding
=
data_generator
.
data_name_feeding
()
batch_shuffle
=
False
)
feeding
=
train_generator
.
data_name_feeding
()
# create event handler
def
event_handler
(
event
):
...
...
@@ -183,17 +175,8 @@ def train():
time
.
time
()
-
start_time
,
event
.
pass_id
,
result
.
cost
)
# run train
# first pass with sortagrad
if
args
.
use_sortagrad
:
trainer
.
train
(
reader
=
train_batch_reader_sortagrad
,
event_handler
=
event_handler
,
num_passes
=
1
,
feeding
=
feeding
)
args
.
num_passes
-=
1
# other passes without sortagrad
trainer
.
train
(
reader
=
train_batch_reader
_nosortagrad
,
reader
=
train_batch_reader
,
event_handler
=
event_handler
,
num_passes
=
args
.
num_passes
,
feeding
=
feeding
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录