提交 d67d362c 编写于 作者: G Guo Sheng 提交者: GitHub

Merge pull request #58 from guoshengCS/add_caffe2paddle_tool

add tools for model conversion from Caffe to PaddlePaddle
## 使用说明
`caffe2paddle.py`提供了将Caffe训练的模型转换为PaddlePaddle可使用的模型的接口`ModelConverter`,其封装了图像领域常用的Convolution、BatchNorm等layer的转换函数,可以完成VGG、ResNet等常用模型的转换。模型转换的基本过程是:基于Caffe的Python API加载模型并依次获取每一个layer的信息,将其中的参数根据layer类型与PaddlePaddle适配后序列化保存(对于Pooling等无需训练的layer不做处理),输出可以直接为PaddlePaddle的Python API加载使用的模型文件。
可以按如下方法使用`ModelConverter`接口:
```python
# 定义以下变量为相应的文件路径和文件名
caffe_model_file = "./ResNet-50-deploy.prototxt" # Caffe网络配置文件的路径
caffe_pretrained_file = "./ResNet-50-model.caffemodel" # Caffe模型文件的路径
paddle_tar_name = "Paddle_ResNet50.tar.gz" # 输出的Paddle模型的文件名
# 初始化,从指定文件加载模型
converter = ModelConverter(caffe_model_file=caffe_model_file,
caffe_pretrained_file=caffe_pretrained_file,
paddle_tar_name=paddle_tar_name)
# 进行模型转换
converter.convert()
```
`caffe2paddle.py`中已提供以上步骤,修改其中文件相关变量的值后执行`python caffe2paddle.py`即可完成模型转换。此外,为辅助验证转换结果,`ModelConverter`中封装了使用Caffe API预测的接口`caffe_predict`,使用如下所示,将会打印按类别概率排序的(类别id, 概率)的列表:
```python
# img为图片路径,mean_file为图像均值文件的路径
converter.caffe_predict(img="./cat.jpg", mean_file="./imagenet/ilsvrc_2012_mean.npy")
```
需要注意,在模型转换时会对layer的参数进行命名,这里默认使用PaddlePaddle中默认的layer和参数命名规则:以`wrap_name_default`中的值和该layer类型的调用计数构造layer name,并以此为前缀构造参数名,比如第一个InnerProduct层(相应转换函数说明见下方)的bias参数将被命名为`___fc_layer_0__.wbias`
```python
# 对InnerProduct层的参数进行转换,使用name值构造对应layer的参数名
# wrap_name_default设置默认name值为fc_layer
@wrap_name_default("fc_layer")
def convert_InnerProduct_layer(self, params, name=None)
```
为此,在验证和使用转换得到的模型时,编写PaddlePaddle网络配置无需指定layer name并且要保证和Caffe端模型使用同样的拓扑顺序,尤其是对于ResNet这种有分支的网络结构,要保证两分支在PaddlePaddle和Caffe中先后顺序一致,这样才能够使得模型参数正确加载。
如果不希望使用默认的命名,并且在PaddlePaddle网络配置中指定了layer name,可以建立Caffe和PaddlePaddle网络配置间layer name对应关系的`dict`并在调用`ModelConverter.convert`时作为`name_map`的值传入,这样在命名保存layer中的参数时将使用相应的layer name,不受拓扑顺序的影响。另外这里只针对Caffe网络配置中Convolution、InnerProduct和BatchNorm类别的layer建立`name_map`即可(一方面,对于Pooling等无需训练的layer不需要保存,故这里没有提供转换接口;另一方面,对于Caffe中的Scale类别的layer,由于Caffe和PaddlePaddle在实现上的一些差别,PaddlePaddle中的batch_norm层是BatchNorm和Scale层的复合,故这里对Scale进行了特殊处理)。
import os
import struct
import gzip
import tarfile
import cStringIO
import numpy as np
import cv2
import caffe
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
class ModelConverter(object):
def __init__(self, caffe_model_file, caffe_pretrained_file,
paddle_tar_name):
self.net = caffe.Net(caffe_model_file, caffe_pretrained_file,
caffe.TEST)
self.tar_name = paddle_tar_name
self.params = dict()
self.pre_layer_name = ""
self.pre_layer_type = ""
def convert(self, name_map=None):
layer_dict = self.net.layer_dict
for layer_name in layer_dict.keys():
layer = layer_dict[layer_name]
layer_params = layer.blobs
layer_type = layer.type
if len(layer_params) > 0:
self.pre_layer_name = getattr(
self, "convert_" + layer_type + "_layer")(
layer_params,
name=None
if name_map == None else name_map.get(layer_name))
self.pre_layer_type = layer_type
with gzip.open(self.tar_name, 'w') as f:
self.to_tar(f)
return
def to_tar(self, f):
tar = tarfile.TarFile(fileobj=f, mode='w')
for param_name in self.params.keys():
param_conf, param_data = self.params[param_name]
confStr = param_conf.SerializeToString()
tarinfo = tarfile.TarInfo(name="%s.protobuf" % param_name)
tarinfo.size = len(confStr)
buf = cStringIO.StringIO(confStr)
buf.seek(0)
tar.addfile(tarinfo, fileobj=buf)
buf = cStringIO.StringIO()
self.serialize(param_data, buf)
tarinfo = tarfile.TarInfo(name=param_name)
buf.seek(0)
tarinfo.size = len(buf.getvalue())
tar.addfile(tarinfo, buf)
@staticmethod
def serialize(data, f):
f.write(struct.pack("IIQ", 0, 4, data.size))
f.write(data.tobytes())
@wrap_name_default("conv")
def convert_Convolution_layer(self, params, name=None):
for i in range(len(params)):
data = np.array(params[i].data)
if len(params) == 2:
suffix = "0" if i == 0 else "bias"
file_name = "_%s.w%s" % (name, suffix)
else:
file_name = "_%s.w%s" % (name, str(i))
param_conf = ParameterConfig()
param_conf.name = file_name
param_conf.size = reduce(lambda a, b: a * b, data.shape)
self.params[file_name] = (param_conf, data.flatten())
return name
@wrap_name_default("fc_layer")
def convert_InnerProduct_layer(self, params, name=None):
for i in range(len(params)):
data = np.array(params[i].data)
if len(params) == 2:
suffix = "0" if i == 0 else "bias"
file_name = "_%s.w%s" % (name, suffix)
else:
file_name = "_%s.w%s" % (name, str(i))
data = np.transpose(data)
param_conf = ParameterConfig()
param_conf.name = file_name
dims = list(data.shape)
if len(dims) < 2:
dims.insert(0, 1)
param_conf.size = reduce(lambda a, b: a * b, dims)
param_conf.dims.extend(dims)
self.params[file_name] = (param_conf, data.flatten())
return name
@wrap_name_default("batch_norm")
def convert_BatchNorm_layer(self, params, name=None):
scale = 1 / np.array(params[-1].data)[0] if np.array(
params[-1].data)[0] != 0 else 0
for i in range(2):
data = np.array(params[i].data) * scale
file_name = "_%s.w%s" % (name, str(i + 1))
param_conf = ParameterConfig()
param_conf.name = file_name
dims = list(data.shape)
assert len(dims) == 1
dims.insert(0, 1)
param_conf.size = reduce(lambda a, b: a * b, dims)
param_conf.dims.extend(dims)
self.params[file_name] = (param_conf, data.flatten())
return name
def convert_Scale_layer(self, params, name=None):
assert self.pre_layer_type == "BatchNorm"
name = self.pre_layer_name
for i in range(len(params)):
data = np.array(params[i].data)
suffix = "0" if i == 0 else "bias"
file_name = "_%s.w%s" % (name, suffix)
param_conf = ParameterConfig()
param_conf.name = file_name
dims = list(data.shape)
assert len(dims) == 1
dims.insert(0, 1)
param_conf.size = reduce(lambda a, b: a * b, dims)
if i == 1:
param_conf.dims.extend(dims)
self.params[file_name] = (param_conf, data.flatten())
return name
def caffe_predict(self,
img,
mean_file='./caffe/imagenet/ilsvrc_2012_mean.npy'):
net = self.net
net.blobs['data'].data[...] = load_image(img, mean_file=mean_file)
out = net.forward()
output_prob = net.blobs['prob'].data[0].flatten()
print zip(np.argsort(output_prob)[::-1], np.sort(output_prob)[::-1])
def load_image(file, resize_size=256, crop_size=224, mean_file=None):
# load image
im = cv2.imread(file)
# resize
h, w = im.shape[:2]
h_new, w_new = resize_size, resize_size
if h > w:
h_new = resize_size * h / w
else:
w_new = resize_size * w / h
im = cv2.resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC)
# crop
h, w = im.shape[:2]
h_start = (h - crop_size) / 2
w_start = (w - crop_size) / 2
h_end, w_end = h_start + crop_size, w_start + crop_size
im = im[h_start:h_end, w_start:w_end, :]
# transpose to CHW order
im = im.transpose((2, 0, 1))
if mean_file:
mu = np.load(mean_file)
mu = mu.mean(1).mean(1)
im = im - mu[:, None, None]
im = im / 255.0
return im
if __name__ == "__main__":
caffe_model_file = "./ResNet-50-deploy.prototxt"
caffe_pretrained_file = "./ResNet-50-model.caffemodel"
paddle_tar_name = "Paddle_ResNet50.tar.gz"
converter = ModelConverter(
caffe_model_file=caffe_model_file,
caffe_pretrained_file=caffe_pretrained_file,
paddle_tar_name=paddle_tar_name)
converter.convert()
converter.caffe_predict("./cat.jpg",
"./caffe/imagenet/ilsvrc_2012_mean.npy")
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册