Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
d3fbcefb
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d3fbcefb
编写于
9月 10, 2019
作者:
S
shippingwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ce for image classification
上级
7b7fba1c
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
71 addition
and
12 deletion
+71
-12
PaddleCV/image_classification/build_model.py
PaddleCV/image_classification/build_model.py
+2
-0
PaddleCV/image_classification/models/__init__.py
PaddleCV/image_classification/models/__init__.py
+1
-1
PaddleCV/image_classification/models/se_resnext.py
PaddleCV/image_classification/models/se_resnext.py
+10
-2
PaddleCV/image_classification/train.py
PaddleCV/image_classification/train.py
+15
-4
PaddleCV/image_classification/utils/utility.py
PaddleCV/image_classification/utils/utility.py
+43
-5
未找到文件。
PaddleCV/image_classification/build_model.py
浏览文件 @
d3fbcefb
...
...
@@ -37,6 +37,8 @@ def _basic_model(data, model, args, is_train):
label
=
data
[
1
]
net_out
=
model
.
net
(
input
=
image
,
class_dim
=
args
.
class_dim
)
print
(
"==================="
)
print
(
args
.
class_dim
)
softmax_out
=
fluid
.
layers
.
softmax
(
net_out
,
use_cudnn
=
False
)
if
is_train
and
args
.
use_label_smoothing
:
...
...
PaddleCV/image_classification/models/__init__.py
浏览文件 @
d3fbcefb
...
...
@@ -23,7 +23,7 @@ from .resnet_vd import ResNet50_vd, ResNet101_vd, ResNet152_vd, ResNet200_vd
from
.resnext
import
ResNeXt50_64x4d
,
ResNeXt101_64x4d
,
ResNeXt152_64x4d
,
ResNeXt50_32x4d
,
ResNeXt101_32x4d
,
ResNeXt152_32x4d
from
.resnext_vd
import
ResNeXt50_vd_64x4d
,
ResNeXt101_vd_64x4d
,
ResNeXt152_vd_64x4d
,
ResNeXt50_vd_32x4d
,
ResNeXt101_vd_32x4d
,
ResNeXt152_vd_32x4d
from
.inception_v4
import
InceptionV4
from
.se_resnext
import
SE_ResNeXt50_32x4d
,
SE_ResNeXt101_32x4d
,
SE_ResNeXt152_32x4d
from
.se_resnext
import
SE_ResNeXt50_32x4d
,
SE_ResNeXt101_32x4d
,
SE_ResNeXt152_32x4d
,
CE
from
.se_resnext_vd
import
SE_ResNeXt50_32x4d_vd
,
SE_ResNeXt101_32x4d_vd
,
SE_154_vd
from
.dpn
import
DPN68
,
DPN92
,
DPN98
,
DPN107
,
DPN131
from
.shufflenet_v2_swish
import
ShuffleNetV2_swish
,
ShuffleNetV2_x0_5_swish
,
ShuffleNetV2_x1_0_swish
,
ShuffleNetV2_x1_5_swish
,
ShuffleNetV2_x2_0_swish
...
...
PaddleCV/image_classification/models/se_resnext.py
浏览文件 @
d3fbcefb
...
...
@@ -29,8 +29,9 @@ __all__ = [
class
SE_ResNeXt
():
def
__init__
(
self
,
layers
=
50
):
def
__init__
(
self
,
layers
=
50
,
dropout_seed
=
None
):
self
.
layers
=
layers
self
.
dropout_seed
=
dropout_seed
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
...
...
@@ -121,7 +122,8 @@ class SE_ResNeXt():
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.5
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.5
,
seed
=
self
.
dropout_seed
)
stdv
=
1.0
/
math
.
sqrt
(
drop
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
...
...
@@ -247,3 +249,9 @@ def SE_ResNeXt101_32x4d():
def
SE_ResNeXt152_32x4d
():
model
=
SE_ResNeXt
(
layers
=
152
)
return
model
#NOTE: This is only for continuous evaluation only!
def
CE
():
model
=
SE_ResNeXt
(
layers
=
50
,
dropout_seed
=
100
)
return
model
PaddleCV/image_classification/train.py
浏览文件 @
d3fbcefb
...
...
@@ -65,9 +65,11 @@ def build_program(is_train, main_prog, startup_prog, args):
"""
model
=
models
.
__dict__
[
args
.
model
]()
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
if
args
.
random_seed
:
if
args
.
enable_ce
:
main_prog
.
random_seed
=
args
.
random_seed
startup_prog
.
random_seed
=
args
.
random_seed
args
.
class_dim
=
102
model
=
models
.
__dict__
[
"CE"
]()
with
fluid
.
unique_name
.
guard
():
py_reader
,
loss_out
=
create_model
(
model
,
args
,
is_train
)
# add backward op in program
...
...
@@ -124,16 +126,21 @@ def train(args):
#init model by checkpoint or pretrianed model.
init_model
(
exe
,
args
,
train_prog
)
device_num
=
fluid
.
core
.
get_cuda_device_count
()
if
args
.
use_gpu
else
1
train_batch_size
=
int
(
args
.
batch_size
/
device_num
)
train_reader
=
reader
.
train
(
settings
=
args
)
train_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
int
(
args
.
batch_size
/
fluid
.
core
.
get_cuda_device_count
()),
drop_last
=
True
)
train_reader
,
batch_size
=
train_batch_size
,
drop_last
=
True
)
test_reader
=
reader
.
val
(
settings
=
args
)
test_reader
=
paddle
.
batch
(
test_reader
,
batch_size
=
args
.
test_batch_size
,
drop_last
=
True
)
if
ergs
.
enable_ce
:
train_reader
,
test_reader
=
create_ce_reader
(
train_batch_size
,
test_batch_size
)
train_py_reader
.
decorate_sample_list_generator
(
train_reader
,
place
)
test_py_reader
.
decorate_sample_list_generator
(
test_reader
,
place
)
...
...
@@ -207,6 +214,10 @@ def train(args):
if
pass_id
%
args
.
save_step
==
0
:
save_model
(
args
,
exe
,
train_prog
,
pass_id
)
if
args
.
enable_ce
and
pass_id
==
args
.
num_epochs
-
1
:
print_ce
(
device_num
,
train_epoch_metrics_avg
,
test_epoch_metrics_avg
,
train_speed
)
def
main
():
args
=
parse_args
()
...
...
PaddleCV/image_classification/utils/utility.py
浏览文件 @
d3fbcefb
...
...
@@ -126,7 +126,8 @@ def parse_args():
add_arg
(
'label_smoothing_epsilon'
,
float
,
0.2
,
"The value of label_smoothing_epsilon parameter"
)
#NOTE: (2019/08/08) temporary disable use_distill
#add_arg('use_distill', bool, False, "Whether to use distill")
add_arg
(
'random_seed'
,
int
,
None
,
"random seed"
)
add_arg
(
'enable_ce'
,
bool
,
False
,
"Whether to enable CE"
)
add_arg
(
'random_seed'
,
int
,
1000
,
"random seed"
)
# yapf: enable
args
=
parser
.
parse_args
()
...
...
@@ -271,12 +272,15 @@ def create_pyreader(is_train, args):
feed_label
=
fluid
.
layers
.
data
(
name
=
"feed_label"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
0
)
feed_y_a
=
fluid
.
layers
.
data
(
name
=
"feed_y_a"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
0
)
if
is_train
and
args
.
use_mixup
:
feed_y_a
=
fluid
.
layers
.
data
(
name
=
"feed_y_a"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
0
)
feed_y_b
=
fluid
.
layers
.
data
(
name
=
"feed_y_b"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
0
)
feed_lam
=
fluid
.
layers
.
data
(
name
=
"feed_lam"
,
shape
=
[
1
],
dtype
=
"float32"
,
lod_level
=
0
)
...
...
@@ -296,6 +300,19 @@ def create_pyreader(is_train, args):
return
py_reader
,
[
feed_image
,
feed_label
]
def
create_ce_reader
(
train_batch_size
,
test_batch_size
):
import
random
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
train_reader
=
paddle
.
batch
(
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
train_batch_size
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
test_batch_size
)
return
train_reader
,
test_reader
def
print_info
(
pass_id
,
batch_id
,
print_step
,
metrics
,
time_info
,
info_mode
):
"""print function
...
...
@@ -354,12 +371,33 @@ def print_info(pass_id, batch_id, print_step, metrics, time_info, info_mode):
%
train_acc5
,
"%.5f"
%
test_loss
,
"%.5f"
%
test_acc1
,
"%.5f"
%
test_acc5
))
sys
.
stdout
.
flush
()
elif
info_mode
==
"ce"
:
raise
Warning
(
"CE code is not ready"
)
else
:
raise
Exception
(
"Illegal info_mode"
)
def
print_ce
(
device_num
,
train_metrics
,
test_metrics
,
train_speed
):
if
device_num
==
1
:
# Use the mean cost/acc for training
print
(
"kpis train_cost %s"
%
train_loss
)
print
(
"kpis train_acc_top1 %s"
%
train_acc1
)
print
(
"kpis train_acc_top5 %s"
%
train_acc5
)
# Use the mean cost/acc for testing
print
(
"kpis test_cost %s"
%
test_loss
)
print
(
"kpis test_acc_top1 %s"
%
test_acc1
)
print
(
"kpis test_acc_top5 %s"
%
test_acc5
)
print
(
"kpis train_speed %s"
%
train_speed
)
else
:
# Use the mean cost/acc for training
print
(
"kpis train_cost_card%s %s"
%
(
device_num
,
train_loss
))
print
(
"kpis train_acc_top1_card%s %s"
%
(
device_num
,
train_acc1
))
print
(
"kpis train_acc_top5_card%s %s"
%
(
device_num
,
train_acc5
))
# Use the mean cost/acc for testing
print
(
"kpis test_cost_card%s %s"
%
(
device_num
,
test_loss
))
print
(
"kpis test_acc_top1_card%s %s"
%
(
device_num
,
test_acc1
))
print
(
"kpis test_acc_top5_card%s %s"
%
(
device_num
,
test_acc5
))
print
(
"kpis train_speed_card%s %s"
%
(
device_num
,
train_speed
))
def
best_strategy_compiled
(
args
,
program
,
loss
):
"""make a program which wrapped by a compiled program
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录