未验证 提交 7b7fba1c 编写于 作者: R ruri 提交者: GitHub

fix models README, image classification part (#3308)

* fix models README, image classification part
上级 ac9a35f5
......@@ -30,18 +30,20 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化
图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉中重要的基础问题,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层视觉任务的基础,在许多领域都有着广泛的应用。如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。
| **模型名称** | **模型简介** | **数据集** | **评估指标** **top-1/top-5 accuracy(CV2)** |
| ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------- | ------------------------------------------------ |
| [AlexNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 首次在CNN中成功的应用了ReLU、Dropout和LRN,并使用GPU进行运算加速 | ImageNet-2012验证集 | 56.72%/79.17% |
| [VGG](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在AlexNet的基础上使用3*3小卷积核,增加网络深度,具有很好的泛化能力 | ImageNet-2012验证集 | 72.56%/90.93% |
| [GoogleNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在不增加计算负载的前提下增加了网络的深度和宽度,性能更加优越 | ImageNet-2012验证集 | 70.70%/89.66% |
| [ResNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | Residual Network,引入了新的残差结构,解决了随着网络加深,准确率下降的问题 | ImageNet-2012验证集 | 80.93%/95.33% |
| [ResNet-D](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 融合多种对ResNet改进策略,ResNet50_vd的top1准确率达到79.84% | ImageNet-2012验证集 | 79.84%/94.93% |
| [Inception-v4](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将Inception模块与Residual Connection进行结合,通过ResNet的结构极大地加速训练并获得性能的提升 | ImageNet-2012验证集 | 80.77%/95.26% |
| [MobileNet v1](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将传统的卷积结构改造成两层卷积结构的网络,在基本不影响准确率的前提下大大减少计算时间,更适合移动端和嵌入式视觉应用 | ImageNet-2012验证集 | 70.99%/89.68% |
| [MobileNet v2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | MobileNet结构的微调,直接在thinner的bottleneck层上进行skip learning连接以及对bottleneck layer不进行ReLu非线性处理可取得更好的结果 | ImageNet-2012验证集 | 72.15%/90.65% |
| [SE_ResNeXt](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在ResNeXt 基础、上加入了SE(Sequeeze-and-Excitation) 模块,提高了识别准确率,在ILSVRC 2017 的分类项目中取得了第一名 | ImageNet-2012验证集 | 81.40%/95.48% |
| [ShuffleNet v2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | ECCV2018,轻量级CNN网络,在速度和准确度之间做了很好地平衡。在同等复杂度下,比ShuffleNet和MobileNetv2更准确,更适合移动端以及无人车领域 | ImageNet-2012验证集 | 70.03%/89.17% |
| **模型名称** | **模型简介** | **数据集** | **评估指标 top-1/top-5 accuracy** |
| - | - | - | - |
| [AlexNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 首次在CNN中成功的应用了ReLU、Dropout和LRN,并使用GPU进行运算加速 | ImageNet-2012验证集 | 56.72%/79.17% |
| [VGG19](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在AlexNet的基础上使用3*3小卷积核,增加网络深度,具有很好的泛化能力 | ImageNet-2012验证集 | 72.56%/90.93% |
| [GoogLeNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在不增加计算负载的前提下增加了网络的深度和宽度,性能更加优越 | ImageNet-2012验证集 | 70.70%/89.66% |
| [ResNet50](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | Residual Network,引入了新的残差结构,解决了随着网络加深,准确率下降的问题 | ImageNet-2012验证集 | 76.50%/93.00% |
| [ResNet200_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 融合多种对ResNet改进策略,ResNet200_vd的top1准确率达到80.93% | ImageNet-2012验证集 | 80.93%/95.33% |
| [Inceptionv4](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将Inception模块与Residual Connection进行结合,通过ResNet的结构极大地加速训练并获得性能的提升 | ImageNet-2012验证集 | 80.77%/95.26% |
| [MobileNetV1](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将传统的卷积结构改造成两层卷积结构的网络,在基本不影响准确率的前提下大大减少计算时间,更适合移动端和嵌入式视觉应用 | ImageNet-2012验证集 | 70.99%/89.68% |
| [MobileNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | MobileNet结构的微调,直接在thinner的bottleneck层上进行skip learning连接以及对bottleneck layer不进行ReLu非线性处理可取得更好的结果 | ImageNet-2012验证集 | 72.15%/90.65% |
| [SENet_154_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在ResNeXt 基础、上加入了SE(Sequeeze-and-Excitation)模块,提高了识别准确率,在ILSVRC 2017 的分类项目中取得了第一名 | ImageNet-2012验证集 | 81.40%/95.48% |
| [ShuffleNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | ECCV2018,轻量级CNN网络,在速度和准确度之间做了很好地平衡。在同等复杂度下,比ShuffleNet和MobileNetv2更准确,更适合移动端以及无人车领域 | ImageNet-2012验证集 | 70.03%/89.17% |
更多图像分类模型请参考[Image Classification](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification)
### 目标检测
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册