未验证 提交 b87761f8 编写于 作者: P pangyoki 提交者: GitHub

Add pretrain processing into dygraph bert model, test=release/1.8 (#4718)

上级 e4ad047a
......@@ -230,26 +230,25 @@ class PretrainModelLayer(Layer):
enc_output, next_sent_feat = self.bert_layer(src_ids, position_ids,
sentence_ids, input_mask)
reshaped_emb_out = fluid.layers.reshape(
x=enc_output, shape=[-1, self._emb_size])
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
mask_trans_feat = self.pooled_fc(mask_feat)
mask_trans_feat = self.pre_process_layer(None, mask_trans_feat, "n",
self._prepostprocess_dropout)
mask_trans_feat = self.pre_process_layer(mask_trans_feat)
if self._weight_sharing:
fc_out = fluid.layers.matmul(
x=mask_trans_feat,
y=self.bert_layer._src_emb._w,
y=self.bert_layer._src_emb.weight,
transpose_y=True)
fc_out += self.fc_create_params
else:
fc_out = self.out_fc(mask_trans_feat)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
logits=fc_out, label=mask_label)
mask_lm_loss, mask_lm_softmax = fluid.layers.softmax_with_cross_entropy(
logits=fc_out, label=mask_label, return_softmax=True)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = self.next_sent_fc(next_sent_feat)
......@@ -257,10 +256,11 @@ class PretrainModelLayer(Layer):
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(
logits=next_sent_fc_out, label=labels, return_softmax=True)
lm_acc = fluid.layers.accuracy(input=mask_lm_softmax, label=mask_label)
next_sent_acc = fluid.layers.accuracy(
input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
return lm_acc, next_sent_acc, mean_mask_lm_loss, loss
#!/bin/bash
# pretrain config
SAVE_STEPS=10000
BATCH_SIZE=4096
LR_RATE=1e-4
WEIGHT_DECAY=0.01
MAX_LEN=512
TRAIN_DATA_DIR=data/train
VALIDATION_DATA_DIR=data/validation
CONFIG_PATH=data/demo_config/bert_config.json
VOCAB_PATH=data/demo_config/vocab.txt
# Change your train arguments:
GPU_TO_USE=0,1
# start pretrain
python -m paddle.distributed.launch --selected_gpus=$GPU_TO_USE --log_dir ./pretrain_log ./train.py ${is_distributed}\
--use_cuda true\
--use_data_parallel true\
--weight_sharing true\
--batch_size ${BATCH_SIZE} \
--data_dir ${TRAIN_DATA_DIR} \
--validation_set_dir ${VALIDATION_DATA_DIR} \
--bert_config_path ${CONFIG_PATH} \
--vocab_path ${VOCAB_PATH} \
--generate_neg_sample true\
--checkpoints ./output \
--save_steps ${SAVE_STEPS} \
--learning_rate ${LR_RATE} \
--weight_decay ${WEIGHT_DECAY:-0} \
--max_seq_len ${MAX_LEN} \
--skip_steps 20 \
--validation_steps 1000 \
--num_iteration_per_drop_scope 10 \
--use_fp16 false \
--verbose true
#!/bin/bash
# pretrain config
SAVE_STEPS=100
BATCH_SIZE=4096
LR_RATE=1e-4
WEIGHT_DECAY=0.01
MAX_LEN=512
TRAIN_DATA_DIR=data/train
VALIDATION_DATA_DIR=data/validation
CONFIG_PATH=data/demo_config/bert_config.json
VOCAB_PATH=data/demo_config/vocab.txt
# Change your train arguments:
# start pretrain
python -u ./train.py --use_cuda true\
--use_data_parallel false\
--weight_sharing true\
--batch_size ${BATCH_SIZE} \
--data_dir ${TRAIN_DATA_DIR} \
--validation_set_dir ${VALIDATION_DATA_DIR} \
--bert_config_path ${CONFIG_PATH} \
--vocab_path ${VOCAB_PATH} \
--generate_neg_sample true\
--checkpoints ./output \
--save_steps ${SAVE_STEPS} \
--learning_rate ${LR_RATE} \
--weight_decay ${WEIGHT_DECAY:-0} \
--max_seq_len ${MAX_LEN} \
--skip_steps 20 \
--validation_steps 100 \
--num_iteration_per_drop_scope 10 \
--use_fp16 false \
--verbose true
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT pretraining in Paddle Dygraph Mode"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import sys
if six.PY2:
reload(sys)
sys.setdefaultencoding('utf8')
import os
import time
import argparse
import numpy as np
import multiprocessing
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable
from reader.pretraining import DataReader
from model.bert import PretrainModelLayer, BertConfig
from optimization import Optimizer
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_checkpoint, init_pretraining_params, init_from_static_model
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path", str, "./config/bert_config.json", "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints.")
model_g.add_arg("weight_sharing", bool, True, "If set, share weights between word embedding and masked lm.")
model_g.add_arg("generate_neg_sample", bool, True, "If set, randomly generate negtive samples by positive samples.")
train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch", int, 100, "Number of epoches for training.")
train_g.add_arg("learning_rate", float, 0.0001, "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler", str, "linear_warmup_decay",
"scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.")
train_g.add_arg("num_train_steps", int, 1000000, "Total steps to perform pretraining.")
train_g.add_arg("warmup_steps", int, 4000, "Total steps to perform warmup when pretraining.")
train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.")
train_g.add_arg("use_dynamic_loss_scaling", bool, True, "Whether to use dynamic loss scaling in mixed precision training.")
train_g.add_arg("init_loss_scaling", float, 2**32,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
train_g.add_arg("loss_scaling", float, 1.0,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
train_g.add_arg("incr_every_n_steps", int, 1000, "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf", int, 2,
"Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio", float, 2.0,
"The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio", float, 0.8,
"The less-than-one-multiplier to use when decreasing.")
log_g = ArgumentGroup(parser, "logging", "logging related.")
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose", bool, False, "Whether to output verbose log.")
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir", str, "./data/train/", "Path to training data.")
data_g.add_arg("validation_set_dir", str, "./data/validation/", "Path to validation data.")
data_g.add_arg("test_set_dir", str, None, "Path to test data.")
data_g.add_arg("vocab_path", str, "./config/vocab.txt", "Vocabulary path.")
data_g.add_arg("max_seq_len", int, 512, "Tokens' number of the longest seqence allowed.")
data_g.add_arg("batch_size", int, 8192,
"The total number of examples in one batch for training, see also --in_tokens.")
data_g.add_arg("in_tokens", bool, True,
"If set, the batch size will be the maximum number of tokens in one batch. "
"Otherwise, it will be the maximum number of examples in one batch.")
run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("is_distributed", bool, False, "If set, then start distributed training.")
run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("num_iteration_per_drop_scope", int, 1, "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("do_test", bool, False, "Whether to perform evaluation on test data set.")
run_type_g.add_arg("use_data_parallel", bool, False, "The flag indicating whether to shuffle instances in each pass.")
args = parser.parse_args()
# yapf: enable.
def create_data(batch):
"""
convert data to variable
"""
src_ids = to_variable(batch[0], "src_ids")
position_ids = to_variable(batch[1], "position_ids")
sentence_ids = to_variable(batch[2], "sentence_ids")
input_mask = to_variable(batch[3], "input_mask")
mask_label = to_variable(batch[4], "mask_label")
mask_pos = to_variable(batch[5], "mask_pos")
labels = to_variable(batch[6], "labels")
labels.stop_gradient = True
return src_ids, position_ids, sentence_ids, input_mask, mask_label, mask_pos, labels
def predict_wrapper(pretrained_bert,
data_loader=None):
cost = 0
lm_cost = 0
lm_acc = 0
acc = 0
steps = 0
time_begin = time.time()
try:
for batch in data_loader():
steps += 1
(src_ids, pos_ids, sent_ids, input_mask, mask_label,
mask_pos, labels) = create_data(batch)
each_lm_acc, each_next_acc, each_mask_lm_cost, each_total_cost = pretrained_bert(
src_ids, pos_ids, sent_ids, input_mask,
mask_label, mask_pos, labels)
lm_acc += each_lm_acc.numpy()
acc += each_next_acc.numpy()
lm_cost += each_mask_lm_cost.numpy()
cost += each_total_cost.numpy()
except fluid.core.EOFException:
data_loader.reset()
used_time = time.time() - time_begin
return cost, lm_cost, lm_acc, acc, steps, (steps / used_time)
def train(args):
print("pretraining start")
bert_config = BertConfig(args.bert_config_path)
bert_config.print_config()
if args.use_cuda:
place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id)
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get("CPU_NUM", multiprocessing.cpu_count()))
trainer_count = fluid.dygraph.parallel.Env().nranks
data_reader = DataReader(
data_dir=args.data_dir,
batch_size=args.batch_size,
in_tokens=args.in_tokens,
vocab_path=args.vocab_path,
voc_size=bert_config['vocab_size'],
epoch=args.epoch,
max_seq_len=args.max_seq_len,
generate_neg_sample=args.generate_neg_sample)
batch_generator = data_reader.data_generator()
if args.validation_set_dir and args.validation_set_dir != "":
val_data_reader = DataReader(
data_dir=args.validation_set_dir,
batch_size=args.batch_size,
in_tokens=args.in_tokens,
vocab_path=args.vocab_path,
voc_size=bert_config['vocab_size'],
shuffle_files=False,
epoch=1,
max_seq_len=args.max_seq_len,
is_test=True)
val_batch_generator = val_data_reader.data_generator()
with fluid.dygraph.guard(place):
if args.use_data_parallel:
strategy = fluid.dygraph.parallel.prepare_context()
# define data loader
train_data_loader = fluid.io.DataLoader.from_generator(capacity=50)
train_data_loader.set_batch_generator(batch_generator, places=place)
if args.validation_set_dir and args.validation_set_dir != "":
val_data_loader = fluid.io.DataLoader.from_generator(capacity=50)
val_data_loader.set_batch_generator(val_batch_generator, places=place)
# define model
pretrained_bert = PretrainModelLayer(
config=bert_config,
return_pooled_out=True,
weight_sharing=args.weight_sharing,
use_fp16=args.use_fp16)
optimizer = Optimizer(
warmup_steps=args.warmup_steps,
num_train_steps=args.num_train_steps,
learning_rate=args.learning_rate,
model_cls=pretrained_bert,
weight_decay=args.weight_decay,
scheduler=args.lr_scheduler,
loss_scaling=args.loss_scaling,
parameter_list=pretrained_bert.parameters())
## init from some checkpoint, to resume the previous training
if args.init_checkpoint and args.init_checkpoint != "":
model_dict, opt_dict = fluid.load_dygraph(
os.path.join(args.init_checkpoint, "pretrained_bert"))
pretrained_bert.load_dict(model_dict)
optimizer.optimizer.set_dict(opt_dict)
if args.use_data_parallel:
pretrained_bert = fluid.dygraph.parallel.DataParallel(
pretrained_bert, strategy)
batch_generator = fluid.contrib.reader.distributed_batch_reader(
batch_generator)
steps = 0
time_begin = time.time()
time_begin_fixed = time_begin
# train_loop
while steps < args.num_train_steps:
try:
for batch in batch_generator():
steps += 1
(src_ids, pos_ids, sent_ids, input_mask, mask_label,
mask_pos, labels) = create_data(batch)
lm_acc, next_acc, mask_lm_cost, total_cost = pretrained_bert(
src_ids, pos_ids, sent_ids, input_mask,
mask_label, mask_pos, labels)
optimizer.optimization(total_cost, use_data_parallel=args.use_data_parallel, model=pretrained_bert)
pretrained_bert.clear_gradients()
time_end = time.time()
used_time = time_end - time_begin
epoch, current_file_index, total_file, current_file = data_reader.get_progress()
if steps % args.skip_steps == 0:
print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
"ppl: %f, lm_acc: %f, next_sent_acc: %f, speed: %f steps/s, file: %s"
% (epoch, current_file_index, total_file, steps,
total_cost.numpy(),
np.exp(mask_lm_cost.numpy()),
lm_acc.numpy(),
next_acc.numpy(), args.skip_steps / used_time,
current_file))
time_begin = time.time()
if steps != 0 and steps % args.save_steps == 0 and fluid.dygraph.parallel.Env().local_rank == 0:
save_path = os.path.join(args.checkpoints, "step_" + str(steps))
if not os.path.exists(save_path):
os.makedirs(save_path)
fluid.save_dygraph(
pretrained_bert.state_dict(),
os.path.join(save_path, "pretrained_bert"))
fluid.save_dygraph(
optimizer.optimizer.state_dict(),
os.path.join(save_path, "pretrained_bert"))
if args.validation_set_dir and steps % args.validation_steps == 0:
pretrained_bert.eval()
vali_cost, vali_lm_cost, vali_lm_acc, vali_acc, vali_steps, vali_speed = predict_wrapper(pretrained_bert, val_data_loader)
print("[validation_set] epoch: %d, step: %d, "
"loss: %f, global ppl: %f, batch-averaged ppl: %f, "
"lm_acc: %f, next_sent_acc: %f, speed: %f steps/s" %
(epoch, steps,
np.mean(np.array(vali_cost) / vali_steps),
np.exp(np.mean(np.array(vali_lm_cost) / vali_steps)),
np.mean(np.exp(np.array(vali_lm_cost) / vali_steps)),
np.mean(np.array(vali_lm_acc) / vali_steps),
np.mean(np.array(vali_acc) / vali_steps), vali_speed))
pretrained_bert.train()
if fluid.dygraph.parallel.Env().local_rank == 0:
save_path = os.path.join(args.checkpoints, "final")
fluid.save_dygraph(
pretrained_bert.state_dict(),
os.path.join(save_path, "pretrained_bert"))
fluid.save_dygraph(
optimizer.optimizer.state_dict(),
os.path.join(save_path, "pretrained_bert"))
except fluid.core.EOFException:
train_data_loader.reset()
break
def test(args):
bert_config = BertConfig(args.bert_config_path)
bert_config.print_config()
place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace()
test_data_reader = DataReader(
data_dir=args.test_set_dir,
batch_size=args.batch_size,
in_tokens=args.in_tokens,
vocab_path=args.vocab_path,
voc_size=bert_config['vocab_size'],
shuffle_files=False,
epoch=1,
max_seq_len=args.max_seq_len,
is_test=True)
test_batch_generator = test_data_reader.data_generator()
with fluid.dygraph.guard(place):
# define data loader
test_data_loader = fluid.io.DataLoader.from_generator(capacity=50)
test_data_loader.set_batch_generator(test_batch_generator, places=place)
# define model
pretrained_bert = PretrainModelLayer(
config=bert_config,
return_pooled_out=True,
weight_sharing=args.weight_sharing,
use_fp16=args.use_fp16)
# restore the model
save_path = os.path.join(args.init_checkpoint, "pretrained_bert")
print("Load params from %s" % save_path)
model_dict, _ = fluid.load_dygraph(save_path)
pretrained_bert.load_dict(model_dict)
pretrained_bert.eval()
cost, lm_cost, lm_acc, acc, steps, speed = predict_wrapper(pretrained_bert, test_data_loader)
print("[test_set] loss: %f, global ppl: %f, lm_acc: %f, next_sent_acc: %f, speed: %f steps/s"
% (np.mean(np.array(cost) / steps),
np.exp(np.mean(np.array(lm_cost) / steps)),
np.mean(np.array(lm_acc) / steps),
np.mean(np.array(acc) / steps), speed))
if __name__ == '__main__':
print_arguments(args)
check_cuda(args.use_cuda)
if args.do_test:
test(args)
else:
train(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册